Welina mai i kā mākou mau pūnaewele!

E ʻohi i ka mana nui me nā modula pyroelectric non-linear

ʻO ka hāʻawi ʻana i nā kumu uila hoʻomau kekahi o nā pilikia nui o kēia kenekulia. ʻO nā wahi noiʻi i nā mea ʻohi ikehu mai kēia kumu hoʻoikaika, me ka thermoelectric1, photovoltaic2 a me thermophotovoltaics3. ʻOiai nele mākou i nā mea a me nā mea hiki ke ʻohi i ka ikehu ma ka laulā Joule, nā mea pyroelectric hiki ke hoʻololi i ka ikehu uila i nā hoʻololi wela o ka manawa i manaʻo ʻia he sensor4 a me ka ʻohi ikehu5,6,7. Ma ʻaneʻi ua hoʻomohala mākou i kahi ʻohi ʻenehana wela macroscopic ma ke ʻano o ka capacitor multilayer i hana ʻia me 42 grams o ke alakaʻi scandium tantalate, e hana ana i 11.2 J o ka ikehu uila no kēlā me kēia pōʻai thermodynamic. Hiki i kēlā me kēia module pyroelectric ke hoʻoulu i ka ikehu uila a hiki i ka 4.43 J cm-3 i kēlā me kēia pōʻai. Hōʻike pū mākou ua lawa nā modula like ʻelua me ke kaupaona ʻana he 0.3 g no ka hoʻomau mau ʻana i nā mea ʻohi ikehu autonomous me nā microcontrollers i hoʻokomo ʻia a me nā ʻike wela. ʻO ka mea hope loa, hōʻike mākou no ka pae wela o 10 K, hiki i kēia mau capacitors multilayer ke hiki i ka 40% Carnot efficiency. ʻO kēia mau waiwai ma muli o (1) ka hoʻololi ʻana o ka pae ferroelectric no ka hana kiʻekiʻe, (2) ka leakage haʻahaʻa e pale ai i nā poho, a me (3) kiʻekiʻe breakdown voltage. ʻO kēia mau macroscopic, scalable a me ka maikaʻi o ka pyroelectric mana hōʻiliʻili ke hoʻoponopono hou nei i ka mana thermoelectric.
Ke hoʻohālikelike ʻia i ka gradient wela spatial i koi ʻia no nā mea thermoelectric, ʻo ka hōʻiliʻili ʻana i ka ikehu o nā mea thermoelectric pono ke kaʻa kaʻa wela i ka manawa. ʻO ia ke ʻano he pōʻaiapuni thermodynamic, i wehewehe maikaʻi ʻia e ke kiʻi entropy (S) -temperature (T). Hōʻike ka Figure 1a i kahi ʻāpana ST maʻamau o kahi mea pyroelectric non-linear (NLP) e hōʻike ana i ka neʻe ʻana o ka pae ferroelectric-paraelectric i ka scandium lead tantalate (PST). ʻO nā ʻāpana uliuli a me ka ʻōmaʻomaʻo o ka pōʻai ma ke kiʻi ST e pili ana i ka ikehu uila i hoʻololi ʻia i ka pōʻai Olson (ʻelua ʻāpana isothermal a me ʻelua isopole). Ma ʻaneʻi mākou e noʻonoʻo ai i ʻelua pōʻai me ka hoʻololi ʻana o ke kahua uila like (ke kahua a me ka hoʻololi ʻana) a me ka hoʻololi ʻana o ka mahana ΔT, ʻoiai me nā ʻano wela mua. ʻAʻole ʻike ʻia ka pōʻai ʻōmaʻomaʻo ma ka ʻāpana hoʻololi pae a no laila he ʻāpana liʻiliʻi loa ia ma mua o ka pōʻai polū i loaʻa i ka ʻāpana hoʻololi. Ma ke kiʻikuhi ST, ʻoi aku ka nui o ka ʻāpana, ʻoi aku ka nui o ka ikehu i hōʻiliʻili ʻia. No laila, pono e hōʻiliʻili ka hoʻololi ʻana i ka ikehu hou aʻe. ʻO ka pono no ka holo kaʻa nui ma NLP ua like loa me ka pono o nā noi electrothermal9, 10, 11, 12 kahi i hōʻike ʻia ai nā capacitors multilayer PST (MLCs) a me nā terpolymers e pili ana i ka PVDF i ka hana hoʻohuli maikaʻi loa. kūlana hana hoʻoluʻu i ka pōʻai 13,14,15,16. No laila, ua ʻike mākou i nā PST MLC hoihoi no ka ʻohi ʻana i ka ikehu wela. Ua wehewehe piha ʻia kēia mau laʻana ma nā ʻano hana a ua ʻike ʻia i nā memo hoʻohui 1 (scanning electron microscopy), 2 (X-ray diffraction) a me 3 (calorimetry).
a, Kiʻi kiʻi o kahi entropy (S) -mahana (T) pā me ke kahua uila a hoʻohana ʻia i nā mea NLP e hōʻike ana i nā hoʻololi ʻana. Hōʻike ʻia ʻelua pōʻaiapuni ohi ikehu ma nā ʻāpana wela ʻokoʻa ʻelua. ʻO nā pōʻai uliuli a me ka ʻōmaʻomaʻo i loko a ma waho o ka hoʻololi ʻana o ka pae, kēlā me kēia, a pau i nā ʻāpana ʻokoʻa loa o ka ʻili. b, elua apo DE PST MLC unipolar, 1 mm manoanoa, ana ma waena o 0 a me 155 kV cm-1 ma 20 °C a me 90°C, pakahi, a me na kaapuni Olsen pili. Hōʻike nā leka ABCD i nā mokuʻāina like ʻole i ka pōʻai ʻo Olson. AB: Ua kau ʻia nā MLC i 155 kV cm-1 ma 20°C. BC: Ua mālama ʻia ka MLC ma 155 kV cm-1 a ua hoʻonui ʻia ka mahana i 90 °C. CD: Hoʻokuʻu ʻia ka MLC ma 90°C. DA: Hoʻolili ʻia ka MLC a hiki i 20°C ma ke kahua ʻaʻohe. Pili ka ʻāpana polū i ka mana hoʻokomo e pono ai e hoʻomaka i ka pōʻai. ʻO ka ʻāpana ʻalani ka ikehu i hōʻiliʻili ʻia i hoʻokahi pōʻai. c, panel luna, voltage (ʻeleʻele) a me kēia manawa (ʻulaʻula) me ka manawa, nānā ʻia i ka wā o ka pōʻai Olson like me b. Hōʻike nā mea hoʻokomo ʻelua i ka hoʻonui ʻana o ka volta a me ka manawa ma nā wahi koʻikoʻi o ka pōʻai. Ma ka ʻaoʻao haʻahaʻa, ʻo nā ʻāpana melemele a me ka ʻōmaʻomaʻo e hōʻike ana i ka wela a me nā pihi ikehu, kēlā me kēia, no ka MLC 1 mm mānoanoa. Ua helu ʻia ka ikehu mai nā ʻōkuhi o kēia manawa a me nā pihi uila ma ka papa luna. Pili ka ikehu ino i ka ikehu i ohiia. ʻO nā ʻanuʻu e pili ana i nā huaʻōlelo nui ma nā helu ʻehā, ua like ia me ka pōʻaiapuni Olson. Pili ka pōʻaiapuni AB'CD me ka pōʻai Stirling (memo hou 7).
kahi ʻo E a me D ke kahua uila a me ke kahua hoʻoneʻe uila. Hiki ke loaʻa ʻole ka Nd mai ke kaapuni DE (Fig. 1b) a i ʻole ma ka hoʻomaka ʻana i kahi pōʻai thermodynamic. Ua wehewehe ʻo Olsen i nā ala maikaʻi loa i kāna hana paionia ma ka hōʻiliʻili ʻana i ka ikehu pyroelectric i ka 1980s17.
Ma ka fig. Hōʻike ka 1b i ʻelua mau puka lou monopolar DE o 1 mm mānoanoa PST-MLC specimens i hui ʻia ma 20 °C a me 90 °C, pakahi, ma luna o ka laulā o 0 a 155 kV cm-1 (600 V). Hiki ke ho'ohana 'ia kēia mau pō'ai 'elua no ka helu 'ole 'ana i ka ikehu i hō'ili'ili 'ia e ka pō'ai 'Olson i hō'ike 'ia ma ke Ki'i 1a. ʻO ka ʻoiaʻiʻo, ʻo ka pōʻaiapuni Olsen he ʻelua mau lālā isofield (ma ʻaneʻi, zero field ma ka lālā DA a me 155 kV cm-1 ma ka lālā BC) a me ʻelua mau lālā isothermal (ma ʻaneʻi, 20 ° С a me 20 ° С ma ka lālā AB) . C ma ka lālā CD) ʻO ka ikehu i hōʻiliʻili ʻia i ka pōʻaiapuni e pili ana i ka ʻāpana ʻalani a me ka uliuli (EdD integral). ʻO ka ikehu i hōʻiliʻili ʻia ʻo Nd ka ʻokoʻa ma waena o ka ikehu hoʻokomo a me ka ikehu puka, ʻo ia hoʻi ka ʻāpana ʻalani wale nō ma ka fig. 1b. Hāʻawi kēia pōʻaiapuni Olson i ka Nd ikehu mānoanoa o 1.78 J cm-3. ʻO ka pōʻai Stirling kahi mea ʻokoʻa i ka pōʻai Olson (Supplementary Note 7). Ma muli o ka maʻalahi o ka loaʻa ʻana o ka pae hoʻopiʻi mau (kaapuni hāmama), hiki i ka nui o ka ikehu i unuhi ʻia mai Fig. 1b (cycle AB'CD) hiki i 1.25 J cm-3. ʻO 70% wale nō kēia o ka mea hiki ke hōʻiliʻili ʻo Olson cycle, akā hana nā mea ʻohi maʻalahi.
Eia hou, ua ana pololei mākou i ka ikehu i hōʻiliʻili ʻia i ka wā o Olson cycle ma o ka hoʻoikaika ʻana i ka PST MLC me ka hoʻohana ʻana i kahi pae hoʻomalu wela o Linkam a me kahi mika kumu (ʻano). Hōʻike ka kiʻi 1c ma luna a me nā mea hoʻokomo i kēia manawa (ʻulaʻula) a me ka uila (ʻeleʻele) i hōʻiliʻili ʻia ma ka PST MLC 1 mm mānoanoa like me ka loop DE e hele ana i ka pōʻai Olson like. ʻO ke au a me ka voltage hiki ke helu i ka ikehu i hōʻiliʻili ʻia, a hōʻike ʻia nā pihi ma ka fig. 1c, lalo ('ōmaʻomaʻo) a me ka mahana (melemele) a puni ka pōʻai. Hōʻike nā leka ABCD i ka pōʻaiapuni Olson like ma ka Fig. ʻO ka hopena o kēia manawa mua mau, ʻaʻole laina laina ka pihi uila (ʻeleʻele ʻeleʻele) ma muli o ke kahua hoʻoneʻe hiki ʻole i ka laina D PST (Fig. 1c, top inset). I ka pau ʻana o ka hoʻouka ʻana, mālama ʻia ka 30 mJ o ka ikehu uila ma ka MLC (helu B). A laila, wela ka MLC a hoʻopuka ʻia kahi ʻano maikaʻi ʻole (a no laila ke ʻano ʻino ʻole) i ka wā e mau ana ka volta ma 600 V. Ma hope o 40 s, i ka wā i hiki ai ka mahana i kahi pāpū o 90 °C, ua uku ʻia kēia manawa, ʻoiai ʻo ka hāpana ʻanuʻu. i hana i loko o ke kaapuni i ka mana uila o 35 mJ i loko o kēia isofield (hoʻokomo lua ma Fig. 1c, luna). Hoʻemi ʻia ka volta ma ka MLC (branch CD), a loaʻa i kahi 60 mJ o ka hana uila. ʻO 95 mJ ka huina o ka ikehu puka. ʻO ka ikehu i hōʻiliʻili ʻia ka ʻokoʻa ma waena o ka ikehu hoʻokomo a me ka ikehu puka, e hāʻawi ana i 95 – 30 = 65 mJ. Pili kēia me ka mānoanoa ikehu o 1.84 J cm-3, kahi kokoke loa i ka Nd i unuhi ʻia mai ke apo DE. Ua ho'āʻo nui ʻia ka hana hou ʻana o kēia pōʻai Olson (Supplementary Note 4). Ma ka hoʻonui hou ʻana i ka volta a me ka mahana, ua loaʻa iā mākou ka 4.43 J cm-3 me ka hoʻohana ʻana i nā pōʻai Olsen i kahi 0.5 mm mānoanoa PST MLC ma luna o kahi mahana wela o 750 V (195 kV cm-1) a me 175 ° C (Supplementary Note 5). ʻEhā mau manawa ʻoi aku kēia ma mua o ka hana maikaʻi loa i hōʻike ʻia ma ka palapala no nā pōʻaiapuni Olson pololei a ua loaʻa ma nā kiʻi ʻoniʻoni lahilahi o Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) (1.06 J cm-3)18 (cm .Supplementary. Papa 1 no nā waiwai hou aʻe i ka palapala). Ua hoʻokō ʻia kēia hana ma muli o ka haʻahaʻa haʻahaʻa loa o kēia mau MLC (<10−7 A ma 750 V a me 180 °C, e ʻike i nā kikoʻī ma Supplementary Note 6)—he wahi koʻikoʻi i ʻōlelo ʻia e Smith et al.19—ma ka ʻokoʻa. i nā mea i hoʻohana ʻia ma nā haʻawina mua17,20. Ua hoʻokō ʻia kēia hana ma muli o ka haʻahaʻa haʻahaʻa loa o kēia mau MLC (<10−7 A ma 750 V a me 180 °C, e ʻike i nā kikoʻī ma Supplementary Note 6)—he wahi koʻikoʻi i ʻōlelo ʻia e Smith et al.19—ma ka ʻokoʻa. i nā mea i hoʻohana ʻia ma nā haʻawina mua17,20. Эти характеристики были достигнуты благодаря очень низкому току утечки этих MLC (<10–7 А при 750 В и 180 °C, лосм римечании 6) — критический момент, упомянутый Смитом и др. 19 — в отличие от к материалам, использованным в более ранних исследованиях17,20. Ua loaʻa kēia mau hiʻohiʻona ma muli o ka haʻahaʻa haʻahaʻa loa o kēia mau MLC (<10-7 A ma 750 V a me 180 °C, e ʻike i ka Nānā Hoʻohui 6 no nā kikoʻī) - kahi koʻikoʻi i ʻōlelo ʻia e Smith et al. 19 - ʻokoʻa i nā mea i hoʻohana ʻia i nā haʻawina mua17,20.MLC提到的关键点——相比之下,已经达到了这种性能到早期研究中使用的材料17,20。由于 这些 mlc 的 泄漏 非常 (在 在 在 750 V 和 180 ° C 时 <10-7 A , 参见 补充 说明 说明 说明 6 ))) — 等 人 19 提到 关键 关键 点 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比下下下下下下下下 相比之下 相比之下 相比之下相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下,從爱爱下,徲爱下早期研究中使用的材料17.20。 Поскольку ток утечки этих MLC очень низкий (<10–7 при 750 В 180 °C, см. подробности в дополнительном пимюч6) упомянутый Смитом и др. 19 — для сравнения, были достигнуты эти характеристики. No ka mea he haʻahaʻa loa ka leakage o kēia mau MLC (<10–7 A ma 750 V a me 180 °C, e ʻike i ka Palapala Hoʻohui 6 no nā kikoʻī) - kahi kī nui i ʻōlelo ʻia e Smith et al. 19 - no ka hoʻohālikelike, ua hoʻokō ʻia kēia mau hana.i nā mea i hoʻohana ʻia i nā haʻawina mua 17,20.
Hoʻohana ʻia nā kūlana like (600 V, 20–90 °C) i ka pōʻai Stirling (Memo hou 7). E like me ka mea i manaʻo ʻia mai nā hopena o ka pōʻai DE, ʻo 41.0 mJ ka hua. ʻO kekahi o nā hiʻohiʻona koʻikoʻi o Stirling cycles ko lākou hiki ke hoʻonui i ka volta mua ma o ka hopena thermoelectric. Ua ʻike mākou i ka loaʻa ʻana o ka volta a hiki i ka 39 (mai ka volta mua o 15 V a i ka volta hopena a hiki i ka 590 V, e ʻike i ke Kiʻi Hoʻohui 7.2).
ʻO kekahi hiʻohiʻona ʻē aʻe o kēia mau MLC, ʻo ia nā mea macroscopic nui e hiki ke hōʻiliʻili i ka ikehu ma ka laulā joule. No laila, ua kūkulu mākou i ka prototype harvester (HARV1) me ka 28 MLC PST 1 mm mānoanoa, ma muli o ka hoʻolālā pāʻani like like i wehewehe ʻia e Torello et al.14, i loko o kahi matrix 7 × 4 e like me ka hōʻike ʻia ma ka Fig. ʻO ka wai dielectric lawe wela i loko. ua hoʻoneʻe ʻia ka manifold e kahi pauma peristaltic ma waena o nā waihona ʻelua kahi i mālama mau ʻia ai ka mahana o ka wai (ʻano). E hōʻiliʻili a hiki i 3.1 J me ka hoʻohana ʻana i ka pōʻai Olson i wehewehe ʻia ma ka fig. 2a, nā ʻāpana isothermal ma 10°C a me 125°C a me nā ʻāpana isofield ma 0 a me 750 V (195 kV cm-1). Pili kēia me ka mānoanoa ikehu o 3.14 J cm-3. Me ka hoʻohana ʻana i kēia hui, ua lawe ʻia nā ana ma lalo o nā kūlana like ʻole (Fig. 2b). E hoʻomaopopo i ka loaʻa ʻana o 1.8 J ma luna o kahi pae wela o 80 °C a me kahi volta o 600 V (155 kV cm-1). He ʻaelike maikaʻi kēia me ka 65 mJ i ʻōlelo mua ʻia no 1 mm mānoanoa PST MLC ma lalo o nā kūlana like (28 × 65 = 1820 mJ).
a, Hoʻonohonoho hoʻokolohua o kahi prototype HARV1 i hui ʻia ma muli o 28 MLC PSTs 1 mm mānoanoa (4 lālani × 7 kolamu) e holo ana ma nā pōʻai Olson. No kēlā me kēia o nā ʻanuʻu pōʻaiapuni ʻehā, hāʻawi ʻia ka mahana a me ka voltage i ka prototype. Hoʻokele ka lolouila i ka paila peristaltic e hoʻokaʻawale i kahi wai dielectric ma waena o nā waihona anu a me ka wela, ʻelua mau kiwi a me kahi kumu mana. Hoʻohana pū ke kamepiula i nā thermocouple e hōʻiliʻili i ka ʻikepili e pili ana i ka volta a me kēia manawa i hāʻawi ʻia i ka prototype a me ka mahana o ka hui ʻana mai ka lako mana. b, Energy (color) i hōʻiliʻili ʻia e kā mākou 4 × 7 MLC prototype versus temperature range (X-axis) a me ka voltage (Y-axis) i nā hoʻokolohua like ʻole.
ʻO kahi mana nui o ka mea ʻohi (HARV2) me 60 PST MLC 1 mm mānoanoa a me 160 PST MLC 0.5 mm mānoanoa (41.7 g mau mea pyroelectric ikaika) hāʻawi 11.2 J (Supplementary Note 8). I ka makahiki 1984, ua hana ʻo Olsen i mea ʻohi ikehu ma muli o 317 g o kahi pūhui Pb(Zr,Ti)O3 tin-doped hiki ke hana i 6.23 J o ka uila ma kahi mahana o 150 °C (ref. 21). No kēia hui ʻana, ʻo kēia wale nō ka waiwai ʻē aʻe i loaʻa i ka laulā joule. Loaʻa iā ia ma luna o ka hapalua wale nō o ka waiwai i loaʻa iā mākou a aneane ʻehiku manawa o ka maikaʻi. 'O ia ho'i, he 13 manawa ki'eki'e ka nui o ka ikehu o HARV2.
He 57 kekona ka manawa pōʻaiapuni HARV1. Ua hana kēia i 54 mW o ka mana me 4 lālani o 7 kolamu o 1 mm mānoanoa MLC set. No ka hana hou ʻana i hoʻokahi ʻanuʻu, kūkulu mākou i kahi hui ʻekolu (HARV3) me kahi 0.5mm mānoanoa PST MLC a me kahi hoʻonohonoho like me HARV1 a me HARV2 (Supplementary Note 9). Ua ana mākou i ka manawa thermalization o 12.5 kekona. Pili kēia i ka manawa pōʻai o 25 s (Hoʻohui Fig. 9). Hāʻawi ka ikehu i hōʻiliʻili ʻia (47 mJ) i ka mana uila o 1.95 mW no kēlā me kēia MLC, a laila hiki iā mākou ke noʻonoʻo e hana ana ʻo HARV2 i 0.55 W (ma kahi o 1.95 mW × 280 PST MLC 0.5 mm mānoanoa). Eia hou, ua hoʻohālikelike mākou i ka hoʻoili wela me ka hoʻohana ʻana i ka Finite Element Simulation (COMSOL, Supplementary Note 10 a me nā Papa Hoʻohui 2-4) e pili ana i nā hoʻokolohua HARV1. ʻO ka hoʻohālikelike ʻana i nā mea i hiki ke wānana i nā waiwai mana kokoke i kahi kauoha o ka nui o ke kiʻekiʻe (430 mW) no ka helu like o nā kolamu PST ma ka hoʻoemi ʻana i ka MLC i 0.2 mm, me ka hoʻohana ʻana i ka wai ma ke ʻano he coolant, a hoʻihoʻi i ka matrix i 7 lālani. . × 4 kolamu (ma waho aʻe o , aia he 960 mW i ka wā e pili ana ka pahu ma ka ʻaoʻao o ka hui, Hoʻohui Fig. 10b).
No ka hōʻike ʻana i ka pono o kēia ʻohi, ua hoʻohana ʻia kahi pōʻai Stirling i kahi mea hōʻike kū hoʻokahi i loaʻa i ʻelua mau 0.5 mm mānoanoa PST MLC ma ke ʻano he mea hōʻiliʻili wela, kahi hoʻololi uila kiʻekiʻe, kahi hoʻololi uila haʻahaʻa me ka capacitor mālama, kahi mea hoʻololi DC/DC. , he microcontroller mana haʻahaʻa, ʻelua thermocouple a me ka mea hoʻololi hoʻoikaika (Supplementary Note 11). Pono ke kaapuni e hoʻouka mua ʻia ka capacitor mālama ma 9V a laila holo ʻokoʻa ʻoiai ʻo ka mahana o nā MLC ʻelua mai -5 ° C a 85 ° C, ma ʻaneʻi i nā pōʻai o 160 s (hōʻike ʻia kekahi mau pōʻaiapili ma ka Nānā Hoʻohui 11) . ʻO ka mea kupaianaha, hiki i ʻelua MLC ke kaupaona ʻo 0.3g wale nō ke hoʻomalu i kēia ʻōnaehana nui. ʻO kekahi hiʻohiʻona hoihoi ʻo ia ka mea hiki ke hoʻololi i ka 400V i 10-15V me ka 79% pono (Supplementary Note 11 and Supplementary Figure 11.3).
I ka hopena, ua loiloi mākou i ka pono o kēia mau modula MLC i ka hoʻololi ʻana i ka ikehu wela i ka ikehu uila. ʻO ke kumu maikaʻi η o ka maikaʻi ua wehewehe ʻia ʻo ia ka ratio o ka mānoanoa o ka ikehu uila i hōʻiliʻili ʻia Nd i ka mānoanoa o ka wela i hāʻawi ʻia ʻo Qin (Memo hou 12):
Hōʻike nā kiʻi 3a,b i ka pono η a me ka pono kūpono ηr o ka pōʻaiapuni Olsen, i kēlā me kēia, ma ke ʻano he hana o ke ana wela o kahi 0.5 mm MLC mānoanoa. Hāʻawi ʻia nā pūʻulu ʻikepili ʻelua no kahi kahua uila o 195 kV cm-1. ʻO ka pono \(\this\) hiki i 1.43%, ua like ia me 18% o ηr. Eia nō naʻe, no ka pae wela o 10 K mai 25 °C a 35 °C, hiki i ka ηr i nā waiwai a hiki i 40% (ka polū polū ma Fig. 3b). He ʻelua kēia o ka waiwai i ʻike ʻia no nā mea NLP i hoʻopaʻa ʻia ma nā kiʻiʻoniʻoni PMN-PT (ηr = 19%) ma ke ana wela o 10 K a me 300 kV cm-1 (Ref. 18). ʻAʻole i noʻonoʻo ʻia nā pae wela ma lalo o 10 K no ka mea ʻo ka hysteresis thermal o ka PST MLC ma waena o 5 a me 8 K. He mea koʻikoʻi ka ʻike ʻana i ka hopena maikaʻi o ka hoʻololi ʻana o ka pae ma ka pono. ʻO ka ʻoiaʻiʻo, ʻaneʻane loaʻa nā waiwai maikaʻi loa o η a me ηr i ka mahana mua Ti = 25°C ma Fig. 3a,b. Ma muli o ka neʻe ʻana o ka manawa kokoke i ka wā ʻaʻohe kahua i hoʻohana ʻia a ʻo ka Curie temperature TC ma kahi o 20 °C i kēia mau MLC (Supplementary note 13).
a,b, ka pono η a me ka pono kaulike o ka pōʻaiapuni Olson (a)\({\eta }_{{\rm{r}}}=\eta /{\eta}_{{\rm{Carnot} } no ka uwila kiʻekiʻe loa ma ke kahua o 195 kV cm-1 a me nā wela mua like ʻole Ti, }}\,\)(b) no ka MPC PST 0.5 mm mānoanoa, ma muli o ka manawa wela ΔTspan.
ʻElua mau manaʻo koʻikoʻi o ka ʻike hope ʻana: (1) pono e hoʻomaka kekahi kaʻa paikikala maikaʻi ma nā mahana ma luna o TC no ka hoʻololi ʻana o ke kahua i hoʻoulu ʻia (mai ka paraelectric a i ka ferroelectric) e hiki mai; (2) ʻoi aku ka maikaʻi o kēia mau mea i nā manawa holo kokoke i TC. ʻOiai ke hōʻike ʻia nei nā ʻoihana nui i kā mākou mau hoʻokolohua, ʻaʻole hiki i ka palena wela palena ke hoʻokō i nā pono kūpono nui ma muli o ka palena Carnot (\(\Delta T/T\)). Eia nō naʻe, ʻo ka maikaʻi maikaʻi loa i hōʻike ʻia e kēia mau PST MLC e hōʻoiaʻiʻo iā Olsen i kāna haʻi ʻana "he papa maikaʻi 20 regenerative thermoelectric motor e hana ana ma nā mahana ma waena o 50 °C a me 250 °C hiki ke loaʻa ka pono o 30%"17. No ka hoʻokō ʻana i kēia mau waiwai a hoʻāʻo i ka manaʻo, pono e hoʻohana i nā PST doped me nā TC ʻē aʻe, e like me ke aʻo ʻana e Shebanov a me Borman. Ua hōʻike lākou he hiki ke ʻokoʻa ka TC ma PST mai 3°C (Sb doping) a i 33°C (Ti doping) 22 . No laila, manaʻo mākou e hiki i nā hanauna hou pyroelectric regenerators e pili ana i nā doped PST MLC a i ʻole nā ​​​​mea ʻē aʻe me kahi hoʻololi o ka papa kauoha mua e hiki ke hoʻokūkū me nā mea hōʻiliʻili mana maikaʻi loa.
Ma kēia haʻawina, ua noiʻi mākou i nā MLC i hana ʻia mai PST. Aia kēia mau mea hana i kahi pūʻulu o nā electrodes Pt a me PST, kahi e hoʻopili like ʻia ai kekahi mau capacitors. Ua koho ʻia ʻo PST no ka mea he mea EC maikaʻi loa a no laila he mea NLP maikaʻi loa. Hōʻike ʻo ia i kahi hoʻololi o ka pae ferroelectric-paraelectric koi mua ma kahi o 20 °C, e hōʻike ana ua like kona hoʻololi entropy me nā mea i hōʻike ʻia ma ka Fig. Ma kēia haʻawina, ua hoʻohana mākou i 10.4 × 7.2 × 1 mm³ a me 10.4 × 7.2 × 0.5 mm³ MLC. ʻO nā MLC me ka mānoanoa o 1 mm a me 0.5 mm i hana ʻia mai 19 a me 9 mau papa o PST me ka mānoanoa o 38.6 µm, kēlā me kēia. I nā hihia ʻelua, ua kau ʻia ka papa PST i loko ma waena o 2.05 µm mānoanoa platinum electrodes. Ke manaʻo nei ka hoʻolālā o kēia mau MLC he 55% o nā PST e hana nei, e pili ana i ka ʻāpana ma waena o nā electrodes (Supplementary Note 1). ʻO 48.7 mm2 ka wahi electrode ikaika (Paʻa 5 Hoʻohui). Ua hoʻomākaukau ʻia ʻo MLC PST e ka hopena paʻa a me ke ʻano hoʻolei. Ua wehewehe ʻia nā kikoʻī o ka hoʻomākaukau ʻana ma ka ʻatikala mua14. ʻO kekahi o nā ʻokoʻa ma waena o ka PST MLC a me ka ʻatikala ma mua, ʻo ia ka hoʻonohonoho ʻana o nā pūnaewele B, e pili nui ana i ka hana o EC ma PST. ʻO ke kauoha o nā kahua-B o PST MLC he 0.75 (Supplementary Note 2) i loaʻa ma ka sintering ma 1400°C a ukali ʻia e nā haneli haneli lōʻihi o ka annealing ma 1000°C. No ka 'ike hou aku e pili ana i ka PST MLC, e nānā i nā memo hou 1-3 a me ka papa 5.
ʻO ka manaʻo nui o kēia haʻawina e pili ana i ka pōʻai Olson (Fig. 1). No kēlā ʻano pōʻai, pono mākou i kahi waihona wela a me ke anuanu a me kahi lako mana hiki ke nānā a hoʻokele i ka volta a me ke au i nā modula MLC like ʻole. Ua hoʻohana kēia mau pōʻaiapili pololei i ʻelua mau hoʻonohonoho like ʻole, ʻo ia hoʻi (1) nā modula Linkam hoʻomehana a hoʻoluʻu i hoʻokahi MLC i hoʻopili ʻia i kahi kumu mana Keithley 2410, a (2) ʻekolu prototypes (HARV1, HARV2 a me HARV3) i ka like me ka ikehu kumu hoʻokahi. I ka hopena hope, ua hoʻohana ʻia kahi wai dielectric (ʻaila silicone me ka viscosity o 5 cP ma 25 ° C, i kūʻai ʻia mai Sigma Aldrich) no ka hoʻololi wela ma waena o nā waihona ʻelua (wela a me ke anuanu) a me ka MLC. Aia ka waihona wai wela i kahi ipu aniani i hoʻopiha ʻia me ka wai dielectric a kau ʻia ma luna o ka pā wela. ʻO ka mālama anuanu he ʻauʻau wai me nā paipu wai i loaʻa ka wai dielectric i loko o kahi pahu plastik nui i piha i ka wai a me ka hau. Ua hoʻokomo ʻia ʻelua mau kiwi pinch ʻekolu ala (kūʻai ʻia mai ka Bio-Chem Fluidics) ma kēlā me kēia hopena o ka hui e hoʻololi pono i ka wai mai kahi waihona i kekahi (Figure 2a). No ka hōʻoia ʻana i ke kaulike wela ma waena o ka pūʻolo PST-MLC a me ka mea hoʻomaha, ua hoʻolōʻihi ʻia ka manawa pōʻai a hiki i nā thermocouple inlet a puka waho (e like me ka hiki i ka pūʻolo PST-MLC) hōʻike i ka mahana like. Hoʻoponopono a hoʻonohonoho ka Python script i nā mea kani a pau (nā mika kumu, nā ʻume, nā kiwikā, a me nā thermocouples) e holo i ka pōʻaiapuni Olson pololei, ʻo ia hoʻi, hoʻomaka ka puʻupuʻu hoʻoluʻu e holo kaʻa ma ka puʻu PST ma hope o ka hoʻopaʻa ʻia ʻana o ka mika kumu i wela lākou i ka makemake. i hoʻohana ʻia ka uila no ka pōʻai Olson i hāʻawi ʻia.
ʻO kahi ʻē aʻe, ua hōʻoia mākou i kēia mau ana pololei o ka ikehu i hōʻiliʻili ʻia me nā ala ʻole. Hoʻokumu ʻia kēia mau ʻano hana ʻole ma luna o ka hoʻoneʻe ʻana i ka uila (D) - nā puka loula kahua uila (E) i hōʻiliʻili ʻia ma nā mahana like ʻole, a ma ka helu ʻana i ka ʻāpana ma waena o ʻelua mau puka lou DE, hiki i kekahi ke koho pololei i ka nui o ka ikehu e hiki ke hōʻiliʻili ʻia, e like me ka hōʻike ʻana ma ke kiʻi. . ma ka helu 2. .1b. ʻOhi pū ʻia kēia mau puka lou DE me ka hoʻohana ʻana i nā mika kumu Keithley.
He iwakāluakūmāwalu 1 mm mau PST MLC mānoanoa i hōʻuluʻulu ʻia i loko o ka lālani 4-lālani, 7-kolume pā like like me ka hoʻolālā i wehewehe ʻia ma ka kuhikuhi. 14. He 0.75mm ka puka wai ma waena o nā lālani PST-MLC. Loaʻa kēia ma ka hoʻohui ʻana i nā ʻāpana lipine ʻaoʻao ʻelua e like me nā mea hoʻokaʻawale wai a puni nā ʻaoʻao o ka PST MLC. Hoʻopili uila ʻia ka PST MLC me kahi alahaka epoxy kālā e pili ana me nā alakaʻi electrode. Ma hope o kēlā, ua hoʻopili ʻia nā uea me ka resin epoxy kālā i kēlā me kēia ʻaoʻao o nā terminal electrode no ka hoʻopili ʻana i ka lako mana. ʻO ka hope, e hoʻokomo i ka hale holoʻokoʻa i loko o ka hose polyolefin. Hoʻopili ʻia ka mea hope i ka paipu wai e hōʻoia i ka sila kūpono. ʻO ka hope, ua kūkulu ʻia nā ʻano thermocouple K-type mānoanoa 0.25 mm i kēlā me kēia kihi o ka hale PST-MLC e nānā i ka wela o ka wai inlet a me waho. No ka hana ʻana i kēia, pono e hoʻoheheʻe mua ʻia ka hose. Ma hope o ka hoʻokomo ʻana i ka thermocouple, e hoʻopili i ka mea hoʻopili like ma mua ma waena o ka hose thermocouple a me ka uea e hoʻihoʻi i ke sila.
ʻEwalu mau prototypes kaʻawale i kūkulu ʻia, ʻehā o ia mau 40 0.5 mm mānoanoa MLC PST i puʻunaue ʻia e like me nā papa like me 5 kolamu a me 8 lālani, a ʻo nā mea ʻehā i koe he 15 1 mm MLC PSTs mānoanoa kēlā me kēia. ma 3-koluma × 5-lani hoʻonohonoho pā like. ʻO ka nui o nā PST MLC i hoʻohana ʻia he 220 (160 0.5 mm mānoanoa a me 60 PST MLC 1 mm mānoanoa). Kapa mākou i kēia mau ʻāpana ʻelua HARV2_160 a me HARV2_60. ʻO ka lua wai i loko o ka prototype HARV2_160 he ʻelua ʻaoʻao ʻelua lipine 0.25 mm mānoanoa me kahi uea 0.25 mm mānoanoa ma waena o lākou. No ka prototype HARV2_60, ua hana hou mākou i ke kaʻina hana like, akā me ka hoʻohana ʻana i ka uea mānoanoa 0.38 mm. No ka hoʻohālikelike, loaʻa iā HARV2_160 a me HARV2_60 ko lākou mau kaapuni wai ponoʻī, nā pāpaʻi, nā kiwi a me ka ʻaoʻao anu (Supplementary Note 8). Hoʻokaʻawale ʻelua ʻāpana HARV2 i kahi waihona wela, kahi pahu 3 lita (30 knm x 20 cm x 5 knm) ma nā papa wela ʻelua me nā mākēneki wili. Hoʻopili like ʻia nā prototypes ʻewalu a pau. Hoʻohana like nā ʻāpana HARV2_160 a me HARV2_60 i ka pōʻaiapuni ʻo Olson e loaʻa ai ka ʻohi ikehu o 11.2 J.
E kau i ka PST MLC mānoanoa 0.5mm i loko o ka paipu polyolefin me ka lipine ʻaoʻao ʻelua a me ka uwea ma nā ʻaoʻao ʻelua e hana i kahi e kahe ai ka wai. Ma muli o kona liʻiliʻi, ua hoʻonoho ʻia ka prototype ma kahi kokoke i kahi pahu wai wela a i ʻole anu, e hōʻemi ana i nā manawa pōʻai.
Ma PST MLC, hoʻohana ʻia kahi māla uila mau ma o ka hoʻohana ʻana i ka volta mau i ka lālā hoʻomehana. ʻO ka hopena, hoʻokumu ʻia kahi au wela maikaʻi ʻole a mālama ʻia ka ikehu. Ma hope o ka hoʻomehana ʻana i ka PST MLC, hoʻoneʻe ʻia ke kahua (V = 0), a hoʻihoʻi ʻia ka ikehu i mālama ʻia i loko o ia mea i ke kumu kumu, e pili ana i hoʻokahi haʻawina o ka ikehu i hōʻiliʻili ʻia. ʻO ka hope loa, me ka hoʻohana ʻana i ka volta V = 0, ua hoʻomaha ʻia nā MLC PST i ko lākou wela mua i hiki ke hoʻomaka hou ke kaʻina. I kēia pae, ʻaʻole ʻohi ʻia ka ikehu. Holo mākou i ka pōʻai Olsen me kahi Keithley 2410 SourceMeter, e hoʻopiʻi ana i ka PST MLC mai kahi puna uila a hoʻonohonoho i ka pāʻani o kēia manawa i ka waiwai kūpono i hiki ke hōʻiliʻili ʻia nā helu i ka wā o ka hoʻouka ʻana no ka helu ʻana i ka ikehu.
I nā pōʻaiapuni Stirling, ua hoʻopiʻi ʻia nā PST MLC ma ke ʻano punawai uila ma kahi kumu kūʻai uila mua (Vila hoʻomaka Vi > 0), kahi i makemake ʻia e hoʻokō i kēia manawa a hiki i ke kaʻina hoʻopiʻi ke holo ma kahi o 1 s (a ua hōʻiliʻili ʻia nā helu kūpono no ka helu pono ʻana o ka ikehu) a me ke anuanu. I nā pōʻaiapuni Stirling, ua hoʻopiʻi ʻia nā PST MLC ma ke ʻano punawai uila ma kahi kumu kūʻai uila mua (Vila hoʻomaka Vi > 0), kahi i makemake ʻia e hoʻokō i kēia manawa a hiki i ke kaʻina hoʻopiʻi ke holo ma kahi o 1 s (a ua hōʻiliʻili ʻia nā helu kūpono no ka helu pono ʻana o ka ikehu) a me ke anuanu. Врикла _ в Paresia «0). Iulianaiawa чта "таним кокона э енловак кочнвота э мпеалгочна э ем Miекрэ Ma nā pōʻai Stirling PST MLC, ua hoʻopiʻi ʻia lākou i ke ʻano kumu volyte i ka waiwai mua o ke kahua uila (Vila hoʻomaka mua Vi > 0), ka manawa e makemake ʻia ai, no laila e lawe ʻia ka pae hoʻopiʻi ma kahi o 1 s (a me kahi helu kūpono. ʻohi ʻia nā helu no ka helu ikehu hilinaʻi) a me ke anuanu.PST MLC充电步骤大约需要1 秒(并且收集了足够的点以可靠地计算能量)和低温。 I ka pōʻaiapuni master, hoʻopiʻi ʻia ka PST MLC ma ke kumu kūʻai uila mua (Vila kumu mua Vi > 0) i ke ʻano kumu kumu voli, no laila e lawe ʻia ka manawa hoʻokō pono ma kahi o 1 kekona no ke kaʻina hoʻopiʻi (a ua hōʻiliʻili mākou i nā helu i lawa. reliably helu (ikena) a me ka haʻahaʻa wela. В цикле Стирлинга PST MLC заряжается в режиме источника напряжения с начальным значением электрического полны (напряжения с начальным значением электрического полны (на чальнь) ток податливости таков, что этап зарядки занимает около 1 с (и набирается достаточное количество точек, чтобы надежнот) температуры . I ka pōʻai Stirling, ua hoʻopiʻi ʻia ka PST MLC i ke ʻano kumu uila me kahi waiwai mua o ke kahua uila (Vila hoʻomaka Vi > 0), ʻo ke ʻano o ka hoʻokō pono ʻana e like me ka manawa o ka hoʻopiʻi ʻana ma kahi o 1 s (a me ka helu kūpono. ʻohi ʻia nā helu no ka helu pono ʻana i ka ikehu) a me nā mahana haʻahaʻa.Ma mua o ka wela ʻana o ka PST MLC, e wehe i ke kaapuni ma ka hoʻohana ʻana i kahi au like o I = 0 mA (ʻo 10 nA ka palena haʻahaʻa haʻahaʻa e hiki ai i kā mākou kumu ana. Ma muli o ka hopena, hoʻomau ka uku i ka PST o ka MJK, a piʻi ka uila i ka wā e wela ai ka hāpana. ʻAʻohe ikehu i hōʻiliʻili ʻia ma ka lima BC no ka mea I = 0 mA. Ma hope o ka loaʻa ʻana o kahi mahana kiʻekiʻe, piʻi ka uila i ka MLT FT (i kekahi mau manawa ʻoi aku ma mua o 30 mau manawa, e ʻike i ka fig. 7.2 hou aku), ua hoʻokuʻu ʻia ka MLK FT (V = 0), a mālama ʻia ka ikehu uila i loko o ia mau mea no ka mea like. ʻoiai ʻo lākou ka uku mua. Hoʻihoʻi ʻia ka leka like o kēia manawa i ke kumu-mika. Ma muli o ka loaʻa ʻana o ka volta, ʻoi aku ka kiʻekiʻe o ka ikehu i mālama ʻia ma ke kiʻekiʻe ma mua o ka mea i hāʻawi ʻia i ka hoʻomaka ʻana o ka pōʻai. No laila, loaʻa ka ikehu ma ka hoʻololi ʻana i ka wela i uila.
Ua hoʻohana mākou i kahi Keithley 2410 SourceMeter e nānā i ka volta a me kēia manawa i hoʻohana ʻia i ka PST MLC. Ua helu ʻia ka ikehu pili ma ka hoʻohui ʻana i ka huahana o ka volta a me ke au i heluhelu ʻia e ka mika kumu o Keithley, \ (E = {\int }_{0}^{\tau }{I}_({\rm {meas))}\ hema(t\ akau){V}_{{\rm{meas}}}(t)\), kahi o τ ka manawa o ka manawa. Ma ko mākou kaʻe ikehu, ʻo nā waiwai o ka ikehu maikaʻi ke ʻano o ka ikehu e hāʻawi ai i ka MLC PST, a ʻo nā waiwai maikaʻi ʻole ke ʻano o ka ikehu a mākou e lawe mai ai a no laila ua loaʻa ka ikehu. Hoʻoholo ʻia ka mana pili no ka pōʻaiapuni hōʻiliʻili i hāʻawi ʻia ma ka puʻunaue ʻana i ka ikehu i hōʻiliʻili ʻia e ka manawa τ o ka pōʻai holoʻokoʻa.
Hōʻike ʻia nā ʻikepili āpau ma ka kikokikona nui a i ʻole ka ʻike hou aʻe. Pono e kuhikuhi ʻia nā leka a me nā noi i ke kumu o ka ʻikepili AT a i ʻole ED i hāʻawi ʻia me kēia ʻatikala.
Ando Junior, OH, Maran, ALO & Henao, NC. Ando Junior, OH, Maran, ALO & Henao, NC.Ando Junior, Ohio, Maran, ALO a me Henao, NC Nānā i ka hoʻomohala ʻana a me ka hoʻohana ʻana i nā microgenerators thermoelectric no ka ʻohi ʻana i ka ikehu. Ando Junior, OH, Maran, ALO & Henao, NC 回顾用于能量收集的热电微型发电机的开发和应用。 Ando Junior, OH, Maran, ALO & Henao, NCKe noʻonoʻo nei ʻo Ando Junior, Ohio, Maran, ALO, a me Henao, NC i ka hoʻomohala ʻana a me ka hoʻohana ʻana i nā microgenerators thermoelectric no ka ʻohi ʻana i ka ikehu.hoʻomau. kākoʻo. Energy Rev. 91, 376–393 (2018).
Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC Photovoltaic mea waiwai: nā pono o kēia manawa a me nā pilikia e hiki mai ana. Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC Photovoltaic mea waiwai: nā pono o kēia manawa a me nā pilikia e hiki mai ana.Polman, A., Knight, M., Garnett, EK, Ehrler, B. a me Sinke, VK Photovoltaic mau mea: hana i kēia manawa a me nā pilikia e hiki mai ana. Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC 光伏材料:目前的效率和未来的挑战。 Polman, A., Naita, M., Garnett, EC, Ehrler, B. & Sinke, WC Nā mea o ka lā: pono o kēia manawa a me nā pilikia e hiki mai ana.Polman, A., Knight, M., Garnett, EK, Ehrler, B. a me Sinke, VK Photovoltaic mau mea: hana i kēia manawa a me nā pilikia e hiki mai ana.ʻEpekema 352, aad4424 (2016).
Song, K., Zhao, R., Wang, ZL & Yang, Y. Hoʻohui ʻia ka hopena pyro-piezoelectric no ka hoʻohana ponoʻī ʻana i ka mahana like ʻole a me ka ʻike kaomi. Mele, K., Zhao, R., Wang, ZL & Yang, Y. Hoʻohui i ka hopena pyro-piezoelectric no ka hoʻohana pono ʻana i ka mahana like ʻole a me ka ʻike kaomi.Mele K., Zhao R., Wang ZL a me Yan Yu. Hoʻohui ʻia ka hopena pyropiezoelectric no ke ana like ʻole o ka mahana a me ke kaomi. Mele, K., Zhao, R., Wang, ZL & Yang, Y. 用于自供电同时温度和压力传感的联合热压电效应。 Song, K., Zhao, R., Wang, ZL & Yang, Y. No ka mana pono'ī i ka manawa like me ka mahana a me ke kaomi.Mele K., Zhao R., Wang ZL a me Yan Yu. Hoʻohui ʻia ka hopena thermopiezoelectric no ke ana like ʻole o ka mahana a me ke kaomi.Imua. alma mater 31, 1902831 (2019).
Sebald, G., Pruvost, S. & Guyomar, D. ʻOhi ikehu ma muli o Ericsson pyroelectric cycles i loko o ka relaxor ferroelectric ceramic. Sebald, G., Pruvost, S. & Guyomar, D. ʻOhi ikehu ma muli o Ericsson pyroelectric cycles i loko o ka relaxor ferroelectric ceramic.ʻO Sebald G., Prouvost S. a me Guyomar D. ʻOhi ʻana i ka ikehu ma muli o nā pōʻaiapuni pyroelectric Ericsson i nā seramika ferroelectric relaxor.ʻO Sebald G., Prouvost S. a me Guyomar D. ʻohi ʻana i ka ikehu i nā seramika ferroelectric relaxor e pili ana i ka paikikala pyroelectric Ericsson. Alma mater akamai. hale kūkulu. 17, 15012 (2007).
Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next-generation electrocaloric and pyroelectric material for solid-state electrothermal energy interconversion. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next-generation electrocaloric and pyroelectric material for solid-state electrothermal energy interconversion. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW твердотельной электротермической энергии. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next generation electrocaloric and pyroelectric material for solid state electrothermal energy interconversion. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & He aha hou aku, RW 用于固态电热能相互转换的下一代电热和热释电。 Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & He aha hou aku, RW Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW твердотельной электротермической энергии. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next generation electrocaloric and pyroelectric material for solid state electrothermal energy interconversion.Lede Bull. 39, 1099–1109 (2014).
Zhang, K., Wang, Y., Wang, ZL & Yang, Y. Kūlana a me ke kiʻi-o-pono no ka helu ʻana i ka hana o nā nanogenerators pyroelectric. Zhang, K., Wang, Y., Wang, ZL & Yang, Y. Kūlana a me ke kiʻi-o-pono no ka helu ʻana i ka hana o nā nanogenerators pyroelectric.Zhang, K., Wang, Y., Wang, ZL a me Yang, Yu. He helu maʻamau a me ka maikaʻi no ka helu ʻana i ka hana o nā nanogenerators pyroelectric. Zhang, K., Wang, Y., Wang, ZL & Yang, Y. 用于量化热释电纳米发电机性能的标准和品质因数。 Zhang, K., Wang, Y., Wang, ZL & Yang, Y.Zhang, K., Wang, Y., Wang, ZL a me Yang, Yu. Nā kumu a me nā ana hana no ka helu ʻana i ka hana o kahi nanogenerator pyroelectric.Nano Energy 55, 534–540 (2019).
Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND Electrocaloric cooling cycles in lead scandium tantalate with true regeneration by field variation. Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND Electrocaloric cooling cycles in lead scandium tantalate with true regeneration by field variation.Crossley, S., Nair, B., Watmore, RW, Moya, X. a me Mathur, ND Electrocaloric cooling cycles in lead-scandium tantalate with true regeneration by means of field modification. Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND 钽酸钪铅的电热冷却循环,通过场变化实现真正的再生。 Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND. Tantalum酸钪钪钪钪钪钪钪钪电求的电池水水水水水气水在电影在在线电影。Crossley, S., Nair, B., Watmore, RW, Moya, X. a me Mathur, ND He pōʻai hoʻolili electrothermal o scandium-lead tantalate no ka hoʻōla hou ʻana ma o ka hoʻohuli ʻana i ke kahua.physics Rev. X 9, 41002 (2019).
Moya, X., Kar-Narayan, S. & Mathur, ND Caloric mea kokoke i ka ferroic phase transitions. Moya, X., Kar-Narayan, S. & Mathur, ND Caloric mea kokoke i ka ferroic phase transitions.Moya, X., Kar-Narayan, S. a me Mathur, ND Caloric mea kokoke i ka ferroid phase transitions. Moya, X., Kar-Narayan, S. & Mathur, ND 铁质相变附近的热量材料。 Moya, X., Kar-Narayan, S. & Mathur, ND Mea wela ma kahi kokoke i ka hao hao.Moya, X., Kar-Narayan, S. a me Mathur, ND Nā mea wela kokoke i ka hoʻololi ʻana i ka pae hao.Nat. alma mater 13, 439–450 (2014).
Moya, X. & Mathur, ND Caloric mea no ka hooluolu a me ka wela. Moya, X. & Mathur, ND Caloric mea no ka hooluolu a me ka wela.Moya, X. a me Mathur, ND Nā mea wela no ka hoʻoluʻu a me ka hoʻomehana. Moya, X. & Mathur, ND 用于冷却和加热的热量材料。 Moya, X. & Mathur, ND Mea wela no ka hooluolu a me ka wela.ʻO Moya X. a me Mathur ND Nā mea wela no ka hoʻomaha a me ka wela.ʻEpekema 370, 797–803 (2020).
Torelló, A. & Defay, E. Electrocaloric coolers: he loiloi. Torelló, A. & Defay, E. Electrocaloric coolers: he loiloi.Torello, A. a me Defay, E. Electrocaloric chillers: he loiloi. Toreló, A. & Defay, E. 电热冷却器:评论。 Toreló, A. & Defay, E. 电热冷却器:评论。Torello, A. a me Defay, E. Electrothermal coolers: he loiloi.Kiʻekiʻe. uila uila. alma mater. 8. 2101031 (2022).
Nuchokgwe, Y. et al. Nui ka ikehu o na mea electrocaloric i kauoha nui ia scandium-scandium-lead. Kūkākūkā lāhui. 12, 3298 (2021).
Nair, B. et al. He nui ka hopena electrothermal o ka oxide multilayer capacitors ma luna o kahi ākea ākea. Nature 575, 468–472 (2019).
Torello, A. et al. Nui ka wela i loko o nā electrothermal regenerators. ʻEpekema 370, 125–129 (2020).
Wang, Y. et al. High performance solid state electrothermal cooling system. ʻEpekema 370, 129–133 (2020).
Meng, Y. et al. ʻO Cascade electrothermal cooling device no ka piʻi nui o ka wela. ʻEhuka Lahui 5, 996–1002 (2020).
Olsen, RB & Brown, DD Ka hoʻololi pololei ʻana o ka wela i nā ana pyroelectric pili i ka ikehu uila. Olsen, RB & Brown, DD Ka hoʻololi pololei ʻana o ka wela i nā ana pyroelectric pili i ka ikehu uila.ʻO Olsen, RB a me Brown, DD ʻO ka hoʻololi pololei ʻana o ka wela i ka ikehu uila pili me nā ana pyroelectric. Olsen, RB & Brown, DD 高效直接将热量转换为电能相关的热释电测量。 Olsen, RB & Brown, DDOlsen, RB a me Brown, DD ʻO ka hoʻololi pololei ʻana o ka wela i ka uila e pili ana me nā ana pyroelectric.Ferroelectrics 40, 17–27 (1982).
Pandya, S. et al. ʻO ka ikehu a me ka nui o ka mana ma nā kiʻiʻoniʻoni ferroelectric relaxor. Kahukula lahui. https://doi.org/10.1038/s41563-018-0059-8 (2018).
Smith, AN & Hanrahan, BM Cascaded pyroelectric hoʻololi: hoʻonui i ka ferroelectric phase transition a me nā poho uila. Smith, AN & Hanrahan, BM Cascaded pyroelectric hoʻololi: hoʻonui i ka ferroelectric phase transition a me nā poho uila.Smith, AN a me Hanrahan, BM Cascaded pyroelectric conversion: ferroelectric phase transition and electrical loss optimization. Smith, AN & Hanrahan, BM 级联热释电转换:优化铁电相变和电损耗。 Smith, AN & Hanrahan, BMSmith, AN a me Hanrahan, BM Cascaded pyroelectric conversion: optimization of ferroelectric phase transitions and electrical loss.J. Noi. physics. 128, 24103 (2020).
Hoch, SR Ka hoʻohana ʻana i nā mea ferroelectric e hoʻohuli i ka ikehu wela i uila. kaʻina hana. IEEE 51, 838–845 (1963).
Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. Cascaded pyroelectric mea hoʻololi ikehu. Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. Cascaded pyroelectric mea hoʻololi ikehu.Olsen, RB, Bruno, DA, Briscoe, JM a me Dullea, J. Cascade Pyroelectric Power Converter. Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. 级联热释电能量转换器。 Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. 级联热释电能量转换器。Olsen, RB, Bruno, DA, Briscoe, JM a me Dullea, J. Cascaded pyroelectric power converters.Ferroelectrics 59, 205–219 (1984).
Shebanov, L. & Borman, K. Ma ke alakaʻi-scandium tantalate paʻa hopena me ka hopena electrocaloric kiʻekiʻe. Shebanov, L. & Borman, K. Ma ke alakaʻi-scandium tantalate paʻa hopena me ka hopena electrocaloric kiʻekiʻe.ʻO Shebanov L. a me Borman K. Ma nā hopena paʻa o ke alakaʻi-scandium tantalate me ka hopena electrocaloric kiʻekiʻe. Shebanov, L. & Borman, K. 关于具有高电热效应的钪铅钪固溶体。 Shebanov, L. & Borman, K.ʻO Shebanov L. a me Borman K. Ma nā hopena paʻa scandium-lead-scandium me ka hopena electrocaloric kiʻekiʻe.Ferroelectrics 127, 143–148 (1992).
Mahalo mākou iā N. Furusawa, Y. Inoue, a me K. Honda no ko lākou kōkua ʻana i ka hana ʻana i ka MLC. PL, AT, YN, AA, JL, UP, VK, OB a me ED Mahalo i ka Luxembourg National Research Foundation (FNR) no ke kākoʻo ʻana i kēia hana ma o CAMELHEAT C17/MS/11703691/Defay, MASSENA PRIDE/15/10935404/Defay- Siebentritt, THERMODIMAT C20/MS/14718071/Defay a me BRIDGES2021/MS/16282302/CECOHA/Defay.
Keʻena o ka ʻimi noiʻi a me ka ʻenehana, Luxembourg Institute of Technology (LIST), Belvoir, Luxembourg


Ka manawa hoʻouna: Sep-15-2022