Welina mai i kā mākou mau pūnaewele!

E ʻohi i ka mana nui me nā modula pyroelectric non-linear

ʻO ka hāʻawi ʻana i nā kumu uila hoʻomau kekahi o nā pilikia nui o kēia kenekulia.ʻO nā wahi noiʻi i nā mea ʻohi ikehu mai kēia kumu hoʻoikaika, me ka thermoelectric1, photovoltaic2 a me thermophotovoltaics3.ʻOiai nele mākou i nā mea a me nā mea hiki ke ʻohi i ka ikehu ma ka laulā Joule, nā mea pyroelectric hiki ke hoʻololi i ka ikehu uila i nā hoʻololi wela o ka manawa i manaʻo ʻia he sensor4 a me ka ʻohi ikehu5,6,7.Ma ʻaneʻi ua hoʻomohala mākou i kahi ʻohi ʻenehana wela macroscopic ma ke ʻano o ka capacitor multilayer i hana ʻia me 42 grams o ke alakaʻi scandium tantalate, e hana ana i 11.2 J o ka ikehu uila no kēlā me kēia pōʻai thermodynamic.Hiki i kēlā me kēia module pyroelectric ke hoʻoulu i ka ikehu uila a hiki i ka 4.43 J cm-3 i kēlā me kēia pōʻai.Hōʻike pū mākou ua lawa nā modula like ʻelua me ke kaupaona ʻana he 0.3 g no ka hoʻomau mau ʻana i nā mea ʻohi ikehu autonomous me nā microcontrollers i hoʻokomo ʻia a me nā ʻike wela.ʻO ka mea hope loa, hōʻike mākou no ka pae wela o 10 K, hiki i kēia mau capacitors multilayer ke hiki i ka 40% Carnot efficiency.ʻO kēia mau waiwai ma muli o (1) ka hoʻololi ʻana o ka pae ferroelectric no ka hana kiʻekiʻe, (2) ka leakage haʻahaʻa e pale ai i nā poho, a me (3) kiʻekiʻe breakdown voltage.ʻO kēia mau macroscopic, scalable a me ka maikaʻi o ka pyroelectric mana hōʻiliʻili ke hoʻoponopono hou nei i ka mana thermoelectric.
Ke hoʻohālikelike ʻia i ka gradient wela spatial i koi ʻia no nā mea thermoelectric, ʻo ka hōʻiliʻili ʻana i ka ikehu o nā mea thermoelectric pono ke kaʻa kaʻa wela i ka manawa.ʻO ia ke ʻano he pōʻaiapuni thermodynamic, i wehewehe maikaʻi ʻia e ke kiʻi entropy (S) -temperature (T).Hōʻike ka Figure 1a i kahi ʻāpana ST maʻamau o kahi mea pyroelectric non-linear (NLP) e hōʻike ana i ka neʻe ʻana o ka pae ferroelectric-paraelectric i ka scandium lead tantalate (PST).ʻO nā ʻāpana uliuli a me ka ʻōmaʻomaʻo o ka pōʻai ma ke kiʻi ST e pili ana i ka ikehu uila i hoʻololi ʻia i ka pōʻai Olson (ʻelua ʻāpana isothermal a me ʻelua isopole).Ma ʻaneʻi mākou e noʻonoʻo ai i ʻelua pōʻai me ka hoʻololi ʻana o ke kahua uila like (ke kahua a me ka hoʻololi ʻana) a me ka hoʻololi ʻana o ka mahana ΔT, ʻoiai me nā ʻano wela mua.ʻAʻole ʻike ʻia ka pōʻai ʻōmaʻomaʻo ma ka ʻāpana hoʻololi pae a no laila he ʻāpana liʻiliʻi loa ia ma mua o ka pōʻai polū i loaʻa i ka ʻāpana hoʻololi.Ma ke kiʻikuhi ST, ʻoi aku ka nui o ka ʻāpana, ʻoi aku ka nui o ka ikehu i hōʻiliʻili ʻia.No laila, pono e hōʻiliʻili ka hoʻololi ʻana i ka ikehu hou aʻe.ʻO ka pono no ka holo kaʻa nui ma NLP ua like loa me ka pono o nā noi electrothermal9, 10, 11, 12 kahi i hōʻike ʻia ai nā capacitors multilayer PST (MLCs) a me nā terpolymers e pili ana i ka PVDF i ka hana hoʻohuli maikaʻi loa.kūlana hana hoʻoluʻu i ka pōʻai 13,14,15,16.No laila, ua ʻike mākou i nā PST MLC hoihoi no ka ʻohi ʻana i ka ikehu wela.Ua wehewehe piha ʻia kēia mau laʻana ma nā ʻano hana a ua ʻike ʻia i nā memo hoʻohui 1 (scanning electron microscopy), 2 (X-ray diffraction) a me 3 (calorimetry).
a, Kiʻi kiʻi o kahi entropy (S) -mahana (T) pā me ke kahua uila a hoʻohana ʻia i nā mea NLP e hōʻike ana i nā hoʻololi ʻana.Hōʻike ʻia ʻelua pōʻaiapuni ohi ikehu ma nā ʻāpana wela ʻokoʻa ʻelua.ʻO nā pōʻai uliuli a me ka ʻōmaʻomaʻo i loko a ma waho o ka hoʻololi ʻana o ka pae, kēlā me kēia, a pau i nā ʻāpana ʻokoʻa loa o ka ʻili.b, elua apo DE PST MLC unipolar, 1 mm manoanoa, ana ma waena o 0 a me 155 kV cm-1 ma 20 °C a me 90°C, pakahi, a me na kaapuni Olsen pili.Hōʻike nā leka ABCD i nā mokuʻāina like ʻole i ka pōʻai ʻo Olson.AB: Ua kau ʻia nā MLC i 155 kV cm-1 ma 20°C.BC: Ua mālama ʻia ka MLC ma 155 kV cm-1 a ua hoʻonui ʻia ka mahana i 90 °C.CD: Hoʻokuʻu ʻia ka MLC ma 90°C.DA: Hoʻolili ʻia ka MLC a hiki i 20°C ma ke kahua ʻaʻohe.Pili ka ʻāpana polū i ka mana hoʻokomo e pono ai e hoʻomaka i ka pōʻai.ʻO ka ʻāpana ʻalani ka ikehu i hōʻiliʻili ʻia i hoʻokahi pōʻai.c, panel luna, voltage (ʻeleʻele) a me kēia manawa (ʻulaʻula) me ka manawa, nānā ʻia i ka wā o ka pōʻai Olson like me b.Hōʻike nā mea hoʻokomo ʻelua i ka hoʻonui ʻana o ka volta a me ka manawa ma nā wahi koʻikoʻi o ka pōʻai.Ma ka ʻaoʻao haʻahaʻa, ʻo nā ʻāpana melemele a me ka ʻōmaʻomaʻo e hōʻike ana i ka wela a me nā pihi ikehu, kēlā me kēia, no ka MLC 1 mm mānoanoa.Ua helu ʻia ka ikehu mai nā ʻōkuhi o kēia manawa a me nā pihi uila ma ka papa luna.Pili ka ikehu ino i ka ikehu i ohiia.ʻO nā ʻanuʻu e pili ana i nā huaʻōlelo nui ma nā helu ʻehā, ua like ia me ka pōʻaiapuni Olson.Pili ka pōʻaiapuni AB'CD me ka pōʻai Stirling (memo hou 7).
kahi ʻo E a me D ke kahua uila a me ke kahua hoʻoneʻe uila.Hiki ke loaʻa ʻole ka Nd mai ke kaapuni DE (Fig. 1b) a i ʻole ma ka hoʻomaka ʻana i kahi pōʻai thermodynamic.Ua wehewehe ʻo Olsen i nā ala maikaʻi loa i kāna hana paionia ma ka hōʻiliʻili ʻana i ka ikehu pyroelectric i ka 1980s17.
Ma ka fig.Hōʻike ka 1b i ʻelua mau puka lou monopolar DE o 1 mm mānoanoa PST-MLC specimens i hui ʻia ma 20 °C a me 90 °C, pakahi, ma luna o ka laulā o 0 a 155 kV cm-1 (600 V).Hiki ke ho'ohana 'ia kēia mau pō'ai 'elua no ka helu 'ole 'ana i ka ikehu i hō'ili'ili 'ia e ka pō'ai 'Olson i hō'ike 'ia ma ke Ki'i 1a.ʻO ka ʻoiaʻiʻo, ʻo ka pōʻaiapuni Olsen he ʻelua mau lālā isofield (ma ʻaneʻi, zero field ma ka lālā DA a me 155 kV cm-1 ma ka lālā BC) a me ʻelua mau lālā isothermal (ma ʻaneʻi, 20 ° С a me 20 ° С ma ka lālā AB) .C ma ka lālā CD) ʻO ka ikehu i hōʻiliʻili ʻia i ka pōʻaiapuni e pili ana i ka ʻāpana ʻalani a me ka uliuli (EdD integral).ʻO ka ikehu i hōʻiliʻili ʻia ʻo Nd ka ʻokoʻa ma waena o ka ikehu hoʻokomo a me ka ikehu puka, ʻo ia hoʻi ka ʻāpana ʻalani wale nō ma ka fig.1b.Hāʻawi kēia pōʻaiapuni Olson i ka Nd ikehu mānoanoa o 1.78 J cm-3.ʻO ka pōʻai Stirling kahi mea ʻokoʻa i ka pōʻai Olson (Supplementary Note 7).Ma muli o ka maʻalahi o ka loaʻa ʻana o ka pae hoʻopiʻi mau (kaapuni hāmama), hiki i ka nui o ka ikehu i unuhi ʻia mai Fig. 1b (cycle AB'CD) hiki i 1.25 J cm-3.ʻO 70% wale nō kēia o ka mea hiki ke hōʻiliʻili ʻo Olson cycle, akā hana nā mea ʻohi maʻalahi.
Eia hou, ua ana pololei mākou i ka ikehu i hōʻiliʻili ʻia i ka wā o Olson cycle ma o ka hoʻoikaika ʻana i ka PST MLC me ka hoʻohana ʻana i kahi pae hoʻomalu wela o Linkam a me kahi mika kumu (ʻano).Hōʻike ka kiʻi 1c ma luna a me nā mea hoʻokomo i kēia manawa (ʻulaʻula) a me ka uila (ʻeleʻele) i hōʻiliʻili ʻia ma ka PST MLC 1 mm mānoanoa like me ka loop DE e hele ana i ka pōʻai Olson like.ʻO ke au a me ka voltage hiki ke helu i ka ikehu i hōʻiliʻili ʻia, a hōʻike ʻia nā pihi ma ka fig.1c, lalo ('ōmaʻomaʻo) a me ka mahana (melemele) a puni ka pōʻai.Hōʻike nā leka ABCD i ka pōʻaiapuni Olson like ma ka Fig.ʻO ka hopena o kēia manawa mua mau, ʻaʻole laina laina ka pihi uila (ʻeleʻele ʻeleʻele) ma muli o ke kahua hoʻoneʻe hiki ʻole i ka laina D PST (Fig. 1c, top inset).I ka pau ʻana o ka hoʻouka ʻana, mālama ʻia ka 30 mJ o ka ikehu uila ma ka MLC (helu B).A laila, wela ka MLC a hoʻopuka ʻia kahi ʻano maikaʻi ʻole (a no laila ke ʻano ʻino ʻole) i ka wā e mau ana ka volta ma 600 V. Ma hope o 40 s, i ka wā i hiki ai ka mahana i kahi pāpū o 90 °C, ua uku ʻia kēia manawa, ʻoiai ʻo ka hāpana ʻanuʻu. i hana i loko o ke kaapuni i ka mana uila o 35 mJ i loko o kēia isofield (hoʻokomo lua ma Fig. 1c, luna).Hoʻemi ʻia ka volta ma ka MLC (branch CD), a loaʻa i kahi 60 mJ o ka hana uila.ʻO 95 mJ ka huina o ka ikehu puka.ʻO ka ikehu i hōʻiliʻili ʻia ka ʻokoʻa ma waena o ka ikehu hoʻokomo a me ka ikehu puka, e hāʻawi ana i 95 – 30 = 65 mJ.Pili kēia me ka mānoanoa ikehu o 1.84 J cm-3, kahi kokoke loa i ka Nd i unuhi ʻia mai ke apo DE.Ua ho'āʻo nui ʻia ka hana hou ʻana o kēia pōʻai Olson (Supplementary Note 4).Ma ka hoʻonui hou ʻana i ka volta a me ka mahana, ua loaʻa iā mākou ka 4.43 J cm-3 me ka hoʻohana ʻana i nā pōʻai Olsen i kahi 0.5 mm mānoanoa PST MLC ma luna o kahi mahana wela o 750 V (195 kV cm-1) a me 175 ° C (Supplementary Note 5).ʻEhā mau manawa ʻoi aku kēia ma mua o ka hana maikaʻi loa i hōʻike ʻia ma ka palapala no nā pōʻaiapuni Olson pololei a ua loaʻa ma nā kiʻi ʻoniʻoni lahilahi o Pb(Mg,Nb)O3-PbTiO3 (PMN-PT) (1.06 J cm-3)18 (cm .Supplementary. Papa 1 no nā waiwai hou aʻe i ka palapala). Ua hoʻokō ʻia kēia hana ma muli o ka haʻahaʻa haʻahaʻa loa o kēia mau MLC (<10−7 A ma 750 V a me 180 °C, e ʻike i nā kikoʻī ma Supplementary Note 6)—he wahi koʻikoʻi i ʻōlelo ʻia e Smith et al.19—ma ka ʻokoʻa. i nā mea i hoʻohana ʻia ma nā haʻawina mua17,20. Ua hoʻokō ʻia kēia hana ma muli o ka haʻahaʻa haʻahaʻa loa o kēia mau MLC (<10−7 A ma 750 V a me 180 °C, e ʻike i nā kikoʻī ma Supplementary Note 6)—he wahi koʻikoʻi i ʻōlelo ʻia e Smith et al.19—ma ka ʻokoʻa. i nā mea i hoʻohana ʻia ma nā haʻawina mua17,20. Эти характеристики были достигнуты благодаря очень низкому току утечки этих MLC (<10–7 А при 750 В и 180 °C, тельность. мечании 6) — критический момент, упомянутый Смитом и др.19 — в отличие от к материалам, использованным в более ранних исследованиях17,20. Ua loaʻa kēia mau hiʻohiʻona ma muli o ka haʻahaʻa haʻahaʻa loa o kēia mau MLC (<10-7 A ma 750 V a me 180 °C, e ʻike i ka Nānā Hoʻohui 6 no nā kikoʻī) - kahi koʻikoʻi i ʻōlelo ʻia e Smith et al.19 - ʻokoʻa i nā mea i hoʻohana ʻia i nā haʻawina mua17,20.由于这些 MLC 的泄漏电流非常低(在750 V 和180 °C 时<10-7 A,请参见补充说明6 中中的说明6 中中的请提到的关键点——相比之下,已经达到了这种性能到早期研究中使用的材料17,20。由于 这些 mlc 的 泄漏 非常 (在 在 在 750 V 和 180 ° C 时 <10-7 A , 参见 补充 说明 说明 6 )) — 等 人 19 提到 关键 关键 点 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比下下 相比下下下下下下下下下相比之下 相比之下 相比之下相比之下 相比之下 相比之下 相比之下 相比之下 相比之下 相比之下下七耶爱度早期研究中使用的材料17.20。 Поскольку ток утечки этих MLC очень низкий (<10–7 А при 750 В и 180 °C, см. подробности в дополнительном пилнительном пилемч6) упомянутый Смитом и др.19 — для сравнения, были достигнуты эти характеристики. No ka mea he haʻahaʻa loa ka leakage o kēia mau MLC (<10–7 A ma 750 V a me 180 °C, e ʻike i ka Palapala Hoʻohui 6 no nā kikoʻī) - kahi kī nui i ʻōlelo ʻia e Smith et al.19 - no ka hoʻohālikelike, ua hoʻokō ʻia kēia mau hana.i nā mea i hoʻohana ʻia i nā haʻawina mua 17,20.
Hoʻohana ʻia nā kūlana like (600 V, 20–90 °C) i ka pōʻai Stirling (Memo hou 7).E like me ka mea i manaʻo ʻia mai nā hopena o ka pōʻai DE, ʻo 41.0 mJ ka hua.ʻO kekahi o nā hiʻohiʻona koʻikoʻi o Stirling cycles ko lākou hiki ke hoʻonui i ka volta mua ma o ka hopena thermoelectric.Ua ʻike mākou i ka loaʻa ʻana o ka volta a hiki i ka 39 (mai ka volta mua o 15 V a i ka volta hopena a hiki i ka 590 V, e ʻike i ke Kiʻi Hoʻohui 7.2).
ʻO kekahi hiʻohiʻona ʻē aʻe o kēia mau MLC, ʻo ia nā mea macroscopic nui e hiki ke hōʻiliʻili i ka ikehu ma ka laulā joule.No laila, ua kūkulu mākou i ka prototype harvester (HARV1) me ka 28 MLC PST 1 mm mānoanoa, ma muli o ka hoʻolālā pāʻani like like i wehewehe ʻia e Torello et al.14, i loko o kahi matrix 7 × 4 e like me ka hōʻike ʻia ma ka Fig. ʻO ka wai dielectric lawe wela i loko. ua hoʻoneʻe ʻia ka manifold e kahi pauma peristaltic ma waena o nā waihona ʻelua kahi i mālama mau ʻia ai ka mahana o ka wai (ʻano).E hōʻiliʻili a hiki i 3.1 J me ka hoʻohana ʻana i ka pōʻai Olson i wehewehe ʻia ma ka fig.2a, nā ʻāpana isothermal ma 10°C a me 125°C a me nā ʻāpana isofield ma 0 a me 750 V (195 kV cm-1).Pili kēia me ka mānoanoa ikehu o 3.14 J cm-3.Me ka hoʻohana ʻana i kēia hui, ua lawe ʻia nā ana ma lalo o nā kūlana like ʻole (Fig. 2b).E hoʻomaopopo i ka loaʻa ʻana o 1.8 J ma luna o kahi pae wela o 80 °C a me kahi volta o 600 V (155 kV cm-1).He ʻaelike maikaʻi kēia me ka 65 mJ i ʻōlelo mua ʻia no 1 mm mānoanoa PST MLC ma lalo o nā kūlana like (28 × 65 = 1820 mJ).
a, Hoʻonohonoho hoʻokolohua o kahi prototype HARV1 i hui ʻia ma muli o 28 MLC PSTs 1 mm mānoanoa (4 lālani × 7 kolamu) e holo ana ma nā pōʻai Olson.No kēlā me kēia o nā ʻanuʻu pōʻaiapuni ʻehā, hāʻawi ʻia ka mahana a me ka voltage i ka prototype.Hoʻokele ka lolouila i ka paila peristaltic e hoʻokaʻawale i kahi wai dielectric ma waena o nā waihona anu a me ka wela, ʻelua mau kiwi a me kahi kumu mana.Hoʻohana pū ke kamepiula i nā thermocouple e hōʻiliʻili i ka ʻikepili e pili ana i ka volta a me kēia manawa i hāʻawi ʻia i ka prototype a me ka mahana o ka hui ʻana mai ka lako mana.b, Energy (color) i hōʻiliʻili ʻia e kā mākou 4 × 7 MLC prototype versus temperature range (X-axis) a me ka voltage (Y-axis) i nā hoʻokolohua like ʻole.
ʻO kahi mana nui o ka mea ʻohi (HARV2) me 60 PST MLC 1 mm mānoanoa a me 160 PST MLC 0.5 mm mānoanoa (41.7 g mau mea pyroelectric ikaika) hāʻawi 11.2 J (Supplementary Note 8).I ka makahiki 1984, ua hana ʻo Olsen i mea ʻohi ikehu ma muli o 317 g o kahi pūhui Pb(Zr,Ti)O3 tin-doped hiki ke hana i 6.23 J o ka uila ma kahi mahana o 150 °C (ref. 21).No kēia hui ʻana, ʻo kēia wale nō ka waiwai ʻē aʻe i loaʻa i ka laulā joule.Loaʻa iā ia ma luna o ka hapalua wale nō o ka waiwai i loaʻa iā mākou a aneane ʻehiku manawa o ka maikaʻi.'O ia ho'i, he 13 manawa ki'eki'e ka nui o ka ikehu o HARV2.
He 57 kekona ka manawa pōʻaiapuni HARV1.Ua hana kēia i 54 mW o ka mana me 4 lālani o 7 kolamu o 1 mm mānoanoa MLC set.No ka hana hou ʻana i hoʻokahi ʻanuʻu, kūkulu mākou i kahi hui ʻekolu (HARV3) me kahi 0.5mm mānoanoa PST MLC a me kahi hoʻonohonoho like me HARV1 a me HARV2 (Supplementary Note 9).Ua ana mākou i ka manawa thermalization o 12.5 kekona.Pili kēia i ka manawa pōʻai o 25 s (Hoʻohui Fig. 9).Hāʻawi ka ikehu i hōʻiliʻili ʻia (47 mJ) i ka mana uila o 1.95 mW no kēlā me kēia MLC, a laila hiki iā mākou ke noʻonoʻo e hana ana ʻo HARV2 i 0.55 W (ma kahi o 1.95 mW × 280 PST MLC 0.5 mm mānoanoa).Eia hou, ua hoʻohālikelike mākou i ka hoʻoili wela me ka hoʻohana ʻana i ka Finite Element Simulation (COMSOL, Supplementary Note 10 a me nā Papa Hoʻohui 2-4) e pili ana i nā hoʻokolohua HARV1.ʻO ka hoʻohālikelike ʻana i nā mea i hiki ke wānana i nā waiwai mana kokoke i kahi kauoha o ka nui o ke kiʻekiʻe (430 mW) no ka helu like o nā kolamu PST ma ka hoʻoemi ʻana i ka MLC i 0.2 mm, me ka hoʻohana ʻana i ka wai ma ke ʻano he coolant, a hoʻihoʻi i ka matrix i 7 lālani. .× 4 kolamu (ma waho aʻe o , aia he 960 mW i ka wā e pili ana ka pahu ma ka ʻaoʻao o ka hui, Hoʻohui Fig. 10b).
No ka hōʻike ʻana i ka pono o kēia ʻohi, ua hoʻohana ʻia kahi pōʻai Stirling i kahi mea hōʻike kū hoʻokahi i loaʻa i ʻelua mau 0.5 mm mānoanoa PST MLC ma ke ʻano he mea hōʻiliʻili wela, kahi hoʻololi uila kiʻekiʻe, kahi hoʻololi uila haʻahaʻa me ka capacitor mālama, kahi mea hoʻololi DC/DC. , he microcontroller mana haʻahaʻa, ʻelua thermocouple a me ka mea hoʻololi hoʻoikaika (Supplementary Note 11).Pono ke kaapuni e hoʻouka mua ʻia ka capacitor mālama ma 9V a laila holo ʻokoʻa ʻoiai ʻo ka mahana o nā MLC ʻelua mai -5 ° C a 85 ° C, ma ʻaneʻi i nā pōʻai o 160 s (hōʻike ʻia kekahi mau pōʻaiapili ma ka Nānā Hoʻohui 11) .ʻO ka mea kupaianaha, hiki i ʻelua MLC ke kaupaona ʻo 0.3g wale nō ke hoʻomalu i kēia ʻōnaehana nui.ʻO kekahi hiʻohiʻona hoihoi ʻo ia ka mea hiki ke hoʻololi i ka 400V i 10-15V me ka 79% pono (Supplementary Note 11 and Supplementary Figure 11.3).
I ka hopena, ua loiloi mākou i ka pono o kēia mau modula MLC i ka hoʻololi ʻana i ka ikehu wela i ka ikehu uila.ʻO ke kumu maikaʻi η o ka maikaʻi ua wehewehe ʻia ʻo ia ka ratio o ka mānoanoa o ka ikehu uila i hōʻiliʻili ʻia Nd i ka mānoanoa o ka wela i hāʻawi ʻia ʻo Qin (Memo hou 12):
Hōʻike nā kiʻi 3a,b i ka pono η a me ka pono kūpono ηr o ka pōʻaiapuni Olsen, i kēlā me kēia, ma ke ʻano he hana o ka pae wela o kahi 0.5 mm MLC mānoanoa.Hāʻawi ʻia nā pūʻulu ʻikepili ʻelua no kahi kahua uila o 195 kV cm-1.ʻO ka pono \(\this\) hiki i 1.43%, ua like ia me 18% o ηr.Eia nō naʻe, no ka pae wela o 10 K mai 25 °C a 35 °C, hiki i ka ηr i nā waiwai a hiki i 40% (ka polū polū ma Fig. 3b).He ʻelua kēia o ka waiwai i ʻike ʻia no nā mea NLP i hoʻopaʻa ʻia ma nā kiʻiʻoniʻoni PMN-PT (ηr = 19%) ma ke ana wela o 10 K a me 300 kV cm-1 (Ref. 18).ʻAʻole i noʻonoʻo ʻia nā pae wela ma lalo o 10 K no ka mea ʻo ka hysteresis thermal o ka PST MLC ma waena o 5 a me 8 K. He mea koʻikoʻi ka ʻike ʻana i ka hopena maikaʻi o ka hoʻololi ʻana o ka pae ma ka pono.ʻO ka ʻoiaʻiʻo, ʻaneʻane loaʻa nā waiwai maikaʻi loa o η a me ηr i ka mahana mua Ti = 25°C ma Fig.3a,b.Ma muli o ka neʻe ʻana o ka manawa kokoke i ka wā ʻaʻohe kahua i hoʻohana ʻia a ʻo ka Curie temperature TC ma kahi o 20 °C i kēia mau MLC (Supplementary note 13).
a,b, ka pono η a me ka pono kaulike o ka pōʻaiapuni Olson (a)\({\eta }_{{\rm{r}}}=\eta /{\eta}_{{\rm{Carnot} } no ka uwila kiʻekiʻe loa ma ke kahua o 195 kV cm-1 a me nā wela mua like ʻole Ti, }}\,\)(b) no ka MPC PST 0.5 mm mānoanoa, ma muli o ka manawa wela ΔTspan.
ʻElua mau manaʻo koʻikoʻi o ka ʻike hope ʻana: (1) pono e hoʻomaka kekahi kaʻa paikikala maikaʻi ma nā mahana ma luna o TC no ka hoʻololi ʻana i ke kahua i hoʻokomo ʻia (mai ka paraelectric a i ka ferroelectric);(2) ʻoi aku ka maikaʻi o kēia mau mea i nā manawa holo kokoke i TC.ʻOiai ke hōʻike ʻia nei nā ʻoihana nui i kā mākou mau hoʻokolohua, ʻaʻole hiki i ka palena wela palena ke hoʻokō i nā pono kūpono nui ma muli o ka palena Carnot (\(\Delta T/T\)).Eia nō naʻe, ʻo ka maikaʻi maikaʻi loa i hōʻike ʻia e kēia mau PST MLC e hōʻoiaʻiʻo iā Olsen i kāna ʻōlelo ʻana "ʻo ka papa hana maikaʻi 20 regenerative thermoelectric motor e hana ana ma nā mahana ma waena o 50 °C a me 250 °C hiki ke loaʻa ka pono o 30%"17.No ka hoʻokō ʻana i kēia mau waiwai a hoʻāʻo i ka manaʻo, pono e hoʻohana i nā PST doped me nā TC ʻē aʻe, e like me ke aʻo ʻana e Shebanov a me Borman.Ua hōʻike lākou he hiki ke ʻokoʻa ka TC ma PST mai 3°C (Sb doping) a i 33°C (Ti doping) 22 .No laila, manaʻo mākou e hiki i nā hanauna hou pyroelectric regenerators e pili ana i nā doped PST MLC a i ʻole nā ​​​​mea ʻē aʻe me kahi hoʻololi o ka pae kauoha mua e hiki ke hoʻokūkū me nā mea ʻohi mana maikaʻi loa.
Ma kēia haʻawina, ua noiʻi mākou i nā MLC i hana ʻia mai PST.Aia kēia mau mea hana i kahi pūʻulu o nā electrodes Pt a me PST, kahi e hoʻopili like ʻia ai kekahi mau capacitors.Ua koho ʻia ʻo PST no ka mea he mea EC maikaʻi loa a no laila he mea NLP maikaʻi loa.Hōʻike ʻo ia i kahi hoʻololi o ka pae ferroelectric-paraelectric koi mua ma kahi o 20 °C, e hōʻike ana ua like kona hoʻololi entropy me nā mea i hōʻike ʻia ma ka Fig.Ma kēia haʻawina, ua hoʻohana mākou i 10.4 × 7.2 × 1 mm³ a me 10.4 × 7.2 × 0.5 mm³ MLC.ʻO nā MLC me ka mānoanoa o 1 mm a me 0.5 mm i hana ʻia mai 19 a me 9 mau papa o PST me ka mānoanoa o 38.6 µm, kēlā me kēia.I nā hihia ʻelua, ua kau ʻia ka papa PST i loko ma waena o 2.05 µm mānoanoa platinum electrodes.Ke manaʻo nei ka hoʻolālā o kēia mau MLC he 55% o nā PST e hana nei, e pili ana i ka ʻāpana ma waena o nā electrodes (Supplementary Note 1).ʻO 48.7 mm2 ka wahi electrode ikaika (Paʻa 5 Hoʻohui).Ua hoʻomākaukau ʻia ʻo MLC PST e ka hopena paʻa a me ke ʻano hoʻolei.Ua wehewehe ʻia nā kikoʻī o ka hoʻomākaukau ʻana ma ka ʻatikala mua14.ʻO kekahi o nā ʻokoʻa ma waena o ka PST MLC a me ka ʻatikala ma mua, ʻo ia ka hoʻonohonoho ʻana o nā pūnaewele B, e pili nui ana i ka hana o EC ma PST.ʻO ke kauoha o nā kahua B o PST MLC he 0.75 (Supplementary Note 2) i loaʻa ma ka sintering ma 1400°C a ukali ʻia e nā haneli mau hola lōʻihi o ka annealing ma 1000°C.No ka 'ike hou aku e pili ana i ka PST MLC, e nānā i nā memo hou 1-3 a me ka papa 5.
ʻO ka manaʻo nui o kēia haʻawina e pili ana i ka pōʻai Olson (Fig. 1).No kēlā ʻano pōʻai, pono mākou i kahi waihona wela a me ke anuanu a me kahi lako mana hiki ke nānā a hoʻokele i ka volta a me ke au i nā modula MLC like ʻole.Ua hoʻohana kēia mau pōʻaiapili pololei i ʻelua mau hoʻonohonoho like ʻole, ʻo ia hoʻi (1) nā modula Linkam hoʻomehana a hoʻoluʻu i hoʻokahi MLC i hoʻopili ʻia i kahi kumu mana Keithley 2410, a (2) ʻekolu prototypes (HARV1, HARV2 a me HARV3) i ka like me ka ikehu kumu hoʻokahi.I ka hopena hope, ua hoʻohana ʻia kahi wai dielectric (ʻaila silicone me ka viscosity o 5 cP ma 25 ° C, i kūʻai ʻia mai Sigma Aldrich) no ka hoʻololi wela ma waena o nā waihona ʻelua (wela a me ke anuanu) a me ka MLC.Aia ka waihona wai wela i kahi ipu aniani i hoʻopiha ʻia me ka wai dielectric a kau ʻia ma luna o ka pā wela.ʻO ka mālama anuanu he ʻauʻau wai me nā paipu wai i loaʻa ka wai dielectric i loko o kahi pahu plastik nui i piha i ka wai a me ka hau.Ua hoʻokomo ʻia ʻelua mau kiwi pinch ʻekolu ala (kūʻai ʻia mai ka Bio-Chem Fluidics) ma kēlā me kēia hopena o ka hui e hoʻololi pono i ka wai mai kahi waihona i kekahi (Figure 2a).No ka hōʻoia ʻana i ke kaulike wela ma waena o ka pūʻolo PST-MLC a me ka mea hoʻomaha, ua hoʻolōʻihi ʻia ka manawa pōʻai a hiki i nā thermocouple inlet a me waho (e like me ka hiki i ka pūʻolo PST-MLC) hōʻike i ka mahana like.Hoʻoponopono a hoʻonohonoho pū ka Python script i nā mea kani a pau (nā mika kumu, nā ʻume, nā kiwikā, a me nā thermocouple) e holo i ka pōʻaiapuni Olson pololei, ʻo ia hoʻi, hoʻomaka ka puʻupuʻu hoʻomaha i ke kaʻa ma ka puʻu PST ma hope o ka hoʻopaʻa ʻia ʻana o ka mika kumu i wela lākou i ka makemake. i hoʻohana ʻia ka uila no ka pōʻai Olson i hāʻawi ʻia.
ʻO kahi ʻē aʻe, ua hōʻoia mākou i kēia mau ana pololei o ka ikehu i hōʻiliʻili ʻia me nā ala ʻole.Hoʻokumu ʻia kēia mau ʻano hana ʻole ma luna o ka hoʻoneʻe ʻana i ka uila (D) - nā puka loula kahua uila (E) i hōʻiliʻili ʻia ma nā mahana like ʻole, a ma ka helu ʻana i ka ʻāpana ma waena o ʻelua mau puka lou DE, hiki i kekahi ke koho pololei i ka nui o ka ikehu e hiki ke hōʻiliʻili ʻia, e like me ka hōʻike ʻana ma ke kiʻi. .ma ka helu 2. .1b.ʻOhi pū ʻia kēia mau puka lou DE me ka hoʻohana ʻana i nā mika kumu Keithley.
He iwakāluakūmāwalu 1 mm mau PST MLC mānoanoa i hōʻuluʻulu ʻia i loko o ka lālani 4-lālani, 7-kolume pā like like me ka hoʻolālā i wehewehe ʻia ma ka kuhikuhi.14. He 0.75mm ka puka wai ma waena o nā lālani PST-MLC.Loaʻa kēia ma ka hoʻohui ʻana i nā ʻāpana lipine ʻaoʻao ʻelua e like me nā mea hoʻokaʻawale wai a puni nā ʻaoʻao o ka PST MLC.Hoʻopili uila ʻia ka PST MLC me kahi alahaka epoxy kālā e pili ana me nā alakaʻi electrode.Ma hope o kēlā, ua hoʻopili ʻia nā uea me ka resin epoxy kālā i kēlā me kēia ʻaoʻao o nā terminal electrode no ka hoʻopili ʻana i ka lako mana.ʻO ka hope, e hoʻokomo i ka hale holoʻokoʻa i loko o ka hose polyolefin.Hoʻopili ʻia ka mea hope i ka paipu wai e hōʻoia i ka sila kūpono.ʻO ka hope, ua kūkulu ʻia nā ʻano thermocouple K-type mānoanoa 0.25 mm i kēlā me kēia kihi o ka hale PST-MLC e nānā i ka wela o ka wai inlet a me waho.No ka hana ʻana i kēia, pono e hoʻoheheʻe mua ʻia ka hose.Ma hope o ka hoʻokomo ʻana i ka thermocouple, e hoʻopili i ka mea hoʻopili like ma mua ma waena o ka hose thermocouple a me ka uea e hoʻihoʻi i ke sila.
ʻEwalu mau prototypes kaʻawale i kūkulu ʻia, ʻehā o ia mau 40 0.5 mm mānoanoa MLC PST i puʻunaue ʻia e like me nā papa like me 5 kolamu a me 8 lālani, a ʻo nā mea ʻehā i koe he 15 1 mm MLC PSTs mānoanoa kēlā me kēia.ma 3-koluma × 5-lani hoʻonohonoho pā like.ʻO ka nui o nā PST MLC i hoʻohana ʻia he 220 (160 0.5 mm mānoanoa a me 60 PST MLC 1 mm mānoanoa).Kapa mākou i kēia mau ʻāpana ʻelua HARV2_160 a me HARV2_60.ʻO ka lua wai i loko o ka prototype HARV2_160 he ʻelua ʻaoʻao ʻelua lipine 0.25 mm mānoanoa me kahi uea 0.25 mm mānoanoa ma waena o lākou.No ka prototype HARV2_60, ua hana hou mākou i ke kaʻina hana like, akā me ka hoʻohana ʻana i ka uea mānoanoa 0.38 mm.No ka hoʻohālikelike, loaʻa iā HARV2_160 a me HARV2_60 ko lākou mau kaapuni wai ponoʻī, nā pāpaʻi, nā kiwi a me ka ʻaoʻao anu (Supplementary Note 8).Hoʻokaʻawale ʻelua ʻāpana HARV2 i kahi waihona wela, kahi pahu 3 lita (30 knm x 20 cm x 5 knm) ma nā papa wela ʻelua me nā mākēneki wili.Hoʻopili like ʻia nā prototypes ʻewalu a pau.Hoʻohana like nā ʻāpana HARV2_160 a me HARV2_60 i ka pōʻaiapuni ʻo Olson e loaʻa ai ka ʻohi ikehu o 11.2 J.
E kau i ka PST MLC mānoanoa 0.5mm i loko o ka paipu polyolefin me ka lipine ʻaoʻao ʻelua a me ka uwea ma nā ʻaoʻao ʻelua e hana i kahi e kahe ai ka wai.Ma muli o kona liʻiliʻi, ua hoʻonoho ʻia ka prototype ma kahi kokoke i kahi pahu wai wela a i ʻole anu, e hōʻemi ana i nā manawa pōʻai.
Ma PST MLC, hoʻohana ʻia kahi māla uila mau ma o ka hoʻohana ʻana i ka volta mau i ka lālā hoʻomehana.ʻO ka hopena, hoʻokumu ʻia kahi au wela maikaʻi ʻole a mālama ʻia ka ikehu.Ma hope o ka hoʻomehana ʻana i ka PST MLC, hoʻoneʻe ʻia ke kahua (V = 0), a hoʻihoʻi ʻia ka ikehu i mālama ʻia i loko o ia mea i ke kumu kumu, e pili ana i hoʻokahi haʻawina o ka ikehu i hōʻiliʻili ʻia.ʻO ka hope loa, me ka hoʻohana ʻana i ka volta V = 0, ua hoʻomaha ʻia nā MLC PST i ko lākou wela mua i hiki ke hoʻomaka hou ka pōʻai.I kēia pae, ʻaʻole ʻohi ʻia ka ikehu.Holo mākou i ka pōʻai Olsen me kahi Keithley 2410 SourceMeter, e hoʻopiʻi ana i ka PST MLC mai kahi puna uila a hoʻonohonoho i ka pāʻani o kēia manawa i ka waiwai kūpono i hiki ke hōʻiliʻili ʻia nā helu i ka wā o ka hoʻouka ʻana no ka helu ʻana i ka ikehu.
I nā pōʻaiapuni Stirling, ua hoʻopiʻi ʻia nā PST MLC ma ke ʻano punawai uila ma kahi kumu kūʻai uila mua (Vila hoʻomaka Vi > 0), kahi i makemake ʻia e hoʻokō i kēia manawa a hiki i ke kaʻina hoʻopiʻi ke lawe ma kahi o 1 s (a ua hōʻiliʻili ʻia nā helu kūpono no ka helu pono o ka ikehu) a me ke anuanu. I nā pōʻaiapuni Stirling, ua hoʻopiʻi ʻia nā PST MLC ma ke ʻano punawai uila ma kahi kumu kūʻai uila mua (Vila hoʻomaka Vi > 0), kahi i makemake ʻia e hoʻokō i kēia manawa a hiki i ke kaʻina hoʻopiʻi ke lawe ma kahi o 1 s (a ua hōʻiliʻili ʻia nā helu kūpono no ka helu pono o ka ikehu) a me ke anuanu. В циклах Стирлинга PST MLC заряжались в режиме источника напряжения при начальном значении электрического поля, поля (начальмь > Vid. атливом токе, так что этап зарядки занимает около 1 с (и набирается достаточное количество точек для надежногита трам ура. I nā pōʻai Stirling PST MLC, ua hoʻopiʻi ʻia lākou i ke ʻano kumu volyte i ka waiwai mua o ke kahua uila (Vila hoʻomaka mua Vi > 0), ʻo ka makemake o kēia manawa, no laila e lawe ʻia ka pae hoʻopiʻi ma kahi o 1 s (a me kahi helu kūpono. ʻohi ʻia nā helu no ka helu ikehu hilinaʻi) a me ke anuanu.PST MLC电步骤大约需要1 秒(并且收集了足够的点以可靠地计算能量)和低温。 I ka pōʻaiapuni master, hoʻopiʻi ʻia ka PST MLC ma ke kumu kūʻai uila mua (Vila kumu mua Vi > 0) i ke ʻano kumu kumu voli, no laila e lawe ʻia ka manawa hoʻokō pono ma kahi o 1 kekona no ke kaʻina hoʻopiʻi (a ua hōʻiliʻili mākou i nā helu i lawa. reliably helu (ikena) a me ka haʻahaʻa wela. В цикле Стирлинга PST MLC заряжается в режиме источника напряжения с начальным значением электрического полны (начальныре с начальныре значением электрического) ток податливости таков, что этап зарядки занимает около 1 с (и набирается достаточное количество точек, чтобы гадить) мпературы . I ka pōʻai Stirling, ua hoʻopiʻi ʻia ka PST MLC i ke ʻano kumu uila me kahi waiwai mua o ke kahua uila (Vila hoʻomaka Vi > 0), ʻo ke ʻano o ka hoʻokō pono ʻana e like me ka manawa o ka hoʻopiʻi ʻana ma kahi o 1 s (a me ka helu kūpono. ʻohi ʻia nā helu no ka helu pono ʻana i ka ikehu) a me nā mahana haʻahaʻa.Ma mua o ka wela ʻana o ka PST MLC, e wehe i ke kaapuni ma ka hoʻohana ʻana i kahi au like o I = 0 mA (ʻo 10 nA ka palena haʻahaʻa haʻahaʻa e hiki ai i kā mākou kumu ana.Ma muli o ka hopena, hoʻomau ka uku i ka PST o ka MJK, a piʻi ka uila i ka wā e wela ai ka hāpana.ʻAʻohe ikehu i hōʻiliʻili ʻia ma ka lima BC no ka mea I = 0 mA.Ma hope o ka loaʻa ʻana o kahi mahana kiʻekiʻe, piʻi ka uila i ka MLT FT (i kekahi mau manawa ʻoi aku ma mua o 30 mau manawa, e ʻike i ka fig. 7.2 hou aku), ua hoʻokuʻu ʻia ka MLK FT (V = 0), a mālama ʻia ka ikehu uila i loko o ia mau mea no ka mea like. ʻoiai ʻo lākou ka uku mua.Hoʻihoʻi ʻia ka leka like o kēia manawa i ke kumu-mika.Ma muli o ka loaʻa ʻana o ka volta, ʻoi aku ka kiʻekiʻe o ka ikehu i mālama ʻia ma ke kiʻekiʻe ma mua o ka mea i hāʻawi ʻia i ka hoʻomaka ʻana o ka pōʻai.No laila, loaʻa ka ikehu ma ka hoʻololi ʻana i ka wela i uila.
Ua hoʻohana mākou i kahi Keithley 2410 SourceMeter e nānā i ka volta a me kēia manawa i hoʻohana ʻia i ka PST MLC.Ua helu ʻia ka ikehu pili ma ka hoʻohui ʻana i ka huahana o ka volta a me ke au i heluhelu ʻia e ka mika kumu o Keithley, \ (E = {\int }_{0}^{\tau }{I}_({\rm {meas))}\ hema(t\ akau){V}_{{\rm{meas}}}(t)\), kahi o τ ka manawa o ka manawa.Ma ko mākou kaʻe ikehu, ʻo nā waiwai o ka ikehu maikaʻi ke ʻano o ka ikehu e hāʻawi ai i ka MLC PST, a ʻo nā waiwai maikaʻi ʻole ke ʻano o ka ikehu a mākou e lawe mai ai a no laila ua loaʻa ka ikehu.Hoʻoholo ʻia ka mana pili no ka pōʻaiapuni hōʻiliʻili i hāʻawi ʻia ma ka puʻunaue ʻana i ka ikehu i hōʻiliʻili ʻia e ka manawa τ o ka pōʻai holoʻokoʻa.
Hōʻike ʻia nā ʻikepili āpau ma ka kikokikona nui a i ʻole ka ʻike hou aʻe.Pono e kuhikuhi ʻia nā leka a me nā noi i ke kumu o ka ʻikepili AT a i ʻole ED i hāʻawi ʻia me kēia ʻatikala.
Ando Junior, OH, Maran, ALO & Henao, NC. Ando Junior, OH, Maran, ALO & Henao, NC.Ando Junior, Ohio, Maran, ALO a me Henao, NC Nānā i ka hoʻomohala ʻana a me ka hoʻohana ʻana i nā microgenerators thermoelectric no ka ʻohi ʻana i ka ikehu. Ando Junior, OH, Maran, ALO & Henao, NC 回顾用于能量收集的热电微型发电机的开发和应用。 Ando Junior, OH, Maran, ALO & Henao, NCKe noʻonoʻo nei ʻo Ando Junior, Ohio, Maran, ALO, a me Henao, NC i ka hoʻomohala ʻana a me ka hoʻohana ʻana i nā microgenerators thermoelectric no ka ʻohi ʻana i ka ikehu.hoʻomau.kākoʻo.Energy Rev. 91, 376–393 (2018).
Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC Photovoltaic mea waiwai: nā pono o kēia manawa a me nā pilikia e hiki mai ana. Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC Photovoltaic mea waiwai: nā pono o kēia manawa a me nā pilikia e hiki mai ana.Polman, A., Knight, M., Garnett, EK, Ehrler, B. a me Sinke, VK Photovoltaic mau mea: hana i kēia manawa a me nā pilikia e hiki mai ana. Polman, A., Knight, M., Garnett, EC, Ehrler, B. & Sinke, WC 光伏材料:目前的效率和未来的挑战。 Polman, A., Naita, M., Garnett, EC, Ehrler, B. & Sinke, WC Nā mea o ka lā: pono o kēia manawa a me nā pilikia e hiki mai ana.Polman, A., Knight, M., Garnett, EK, Ehrler, B. a me Sinke, VK Photovoltaic mau mea: hana i kēia manawa a me nā pilikia e hiki mai ana.ʻEpekema 352, aad4424 (2016).
Song, K., Zhao, R., Wang, ZL & Yang, Y. Hoʻohui ʻia ka hopena pyro-piezoelectric no ka hoʻohana ponoʻī ʻana i ka mahana like ʻole a me ka ʻike kaomi. Mele, K., Zhao, R., Wang, ZL & Yang, Y. Hoʻohui i ka hopena pyro-piezoelectric no ka hoʻohana pono ʻana i ka mahana like ʻole a me ka ʻike kaomi.Mele K., Zhao R., Wang ZL a me Yan Yu.Hoʻohui ʻia ka hopena pyropiezoelectric no ke ana like ʻole o ka mahana a me ke kaomi. Mele, K., Zhao, R., Wang, ZL & Yang, Y. 用于自供电同时温度和压力传感的联合热压电效应。 Song, K., Zhao, R., Wang, ZL & Yang, Y. No ka mana pono'ī i ka manawa like me ka mahana a me ke kaomi.Mele K., Zhao R., Wang ZL a me Yan Yu.Hoʻohui ʻia ka hopena thermopiezoelectric no ke ana like ʻole o ka mahana a me ke kaomi.Imua.alma mater 31, 1902831 (2019).
Sebald, G., Pruvost, S. & Guyomar, D. 'Ohi ikehu ma muli o Ericsson pyroelectric cycles i loko o ka relaxor ferroelectric ceramic. Sebald, G., Pruvost, S. & Guyomar, D. 'Ohi ikehu ma muli o Ericsson pyroelectric cycles i loko o ka relaxor ferroelectric ceramic.ʻO Sebald G., Prouvost S. a me Guyomar D. ʻOhi ʻana i ka ikehu ma muli o nā pōʻaiapuni pyroelectric Ericsson i nā seramika ferroelectric relaxor.ʻO Sebald G., Prouvost S. a me Guyomar D. ʻohi ʻana i ka ikehu i nā seramika ferroelectric relaxor e pili ana i ka paikikala pyroelectric Ericsson.Alma mater akamai.hale kūkulu.17, 15012 (2007).
Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next-generation electrocaloric and pyroelectric material for solid-state electrothermal energy interconversion. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next-generation electrocaloric and pyroelectric material for solid-state electrothermal energy interconversion. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & He aha hou aku, RW твердотельной электротермической энергии. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next generation electrocaloric and pyroelectric material for solid state electrothermal energy interconversion. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & He aha hou aku, RW 用于固态电热能相互转换的下一代电热和热释电。 Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & He aha hou aku, RW Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & He aha hou aku, RW твердотельной электротермической энергии. Alpay, SP, Mantese, J., Trolier-Mckinstry, S., Zhang, Q. & Whatmore, RW Next generation electrocaloric and pyroelectric material for solid state electrothermal energy interconversion.Lede Bull.39, 1099–1109 (2014).
Zhang, K., Wang, Y., Wang, ZL & Yang, Y. Kūlana a me ke kiʻi-o-pono no ka helu ʻana i ka hana o nā nanogenerators pyroelectric. Zhang, K., Wang, Y., Wang, ZL & Yang, Y. Kūlana a me ke kiʻi-o-pono no ka helu ʻana i ka hana o nā nanogenerators pyroelectric.Zhang, K., Wang, Y., Wang, ZL a me Yang, Yu.He helu maʻamau a me ka maikaʻi no ka helu ʻana i ka hana o nā nanogenerators pyroelectric. Zhang, K., Wang, Y., Wang, ZL & Yang, Y. 用于量化热释电纳米发电机性能的标准和品质因数。 Zhang, K., Wang, Y., Wang, ZL & Yang, Y.Zhang, K., Wang, Y., Wang, ZL a me Yang, Yu.Nā kumu a me nā ana hana no ka helu ʻana i ka hana o kahi nanogenerator pyroelectric.Nano Energy 55, 534–540 (2019).
Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND Electrocaloric cooling cycles in lead scandium tantalate with true regeneration by field variation. Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND Electrocaloric cooling cycles in lead scandium tantalate with true regeneration by field variation.Crossley, S., Nair, B., Watmore, RW, Moya, X. a me Mathur, ND Electrocaloric cooling cycles in lead-scandium tantalate with true regeneration by means of field modification. Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND 钽酸钪铅的电热冷却循环,通过场变化实现真正的再生。 Crossley, S., Nair, B., Whatmore, RW, Moya, X. & Mathur, ND.Tantalum酸钪钪钪钪钪钪钪钪电求的电池水水水水水气水在电影在在线电影。Crossley, S., Nair, B., Watmore, RW, Moya, X. a me Mathur, ND ʻO kahi pōʻai hoʻoluʻu electrothermal o scandium-lead tantalate no ka hoʻōla hou ʻana ma o ka hoʻohuli ʻana i ke kahua.physics Rev. X 9, 41002 (2019).
Moya, X., Kar-Narayan, S. & Mathur, ND Caloric mea kokoke i ka ferroic phase transitions. Moya, X., Kar-Narayan, S. & Mathur, ND Caloric mea kokoke i ka ferroic phase transitions.Moya, X., Kar-Narayan, S. a me Mathur, ND Caloric mea kokoke i ka ferroid phase transitions. Moya, X., Kar-Narayan, S. & Mathur, ND 铁质相变附近的热量材料。 Moya, X., Kar-Narayan, S. & Mathur, ND Mea wela ma kahi kokoke i ka hao hao.Moya, X., Kar-Narayan, S. a me Mathur, ND Nā mea wela kokoke i ka hoʻololi ʻana i ka pae hao.Nat.alma mater 13, 439–450 (2014).
Moya, X. & Mathur, ND Caloric mea no ka hooluolu a me ka wela. Moya, X. & Mathur, ND Caloric mea no ka hooluolu a me ka wela.Moya, X. a me Mathur, ND Nā mea wela no ka hoʻoluʻu a me ka hoʻomehana. Moya, X. & Mathur, ND 用于冷却和加热的热量材料。 Moya, X. & Mathur, ND Mea wela no ka hooluolu a me ka wela.ʻO Moya X. a me Mathur ND Nā mea wela no ka hoʻomaha a me ka wela.ʻEpekema 370, 797–803 (2020).
Torelló, A. & Defay, E. Electrocaloric coolers: he loiloi. Torelló, A. & Defay, E. Electrocaloric coolers: he loiloi.Torello, A. a me Defay, E. Electrocaloric chillers: he loiloi. Toreló, A. & Defay, E. 电热冷却器:评论。 Toreló, A. & Defay, E. 电热冷却器:评论。Torello, A. a me Defay, E. Electrothermal coolers: he loiloi.Kiʻekiʻe.uila uila.alma mater.8. 2101031 (2022).
Nuchokgwe, Y. et al.Nui ka ikehu o na mea electrocaloric i kauoha nui ia scandium-scandium-lead.Kūkākūkā lāhui.12, 3298 (2021).
Nair, B. et al.He nui ka hopena electrothermal o ka oxide multilayer capacitors ma luna o kahi ākea ākea.Nature 575, 468–472 (2019).
Torello, A. et al.Nui ka wela wela i nā electrothermal regenerators.ʻEpekema 370, 125–129 (2020).
Wang, Y. et al.High performance solid state electrothermal cooling system.ʻEpekema 370, 129–133 (2020).
Meng, Y. et al.ʻO Cascade electrothermal cooling device no ka piʻi nui o ka wela.ʻEhuka Lahui 5, 996–1002 (2020).
Olsen, RB & Brown, DD Ka hoʻololi pololei ʻana o ka wela i nā ana pyroelectric pili i ka ikehu uila. Olsen, RB & Brown, DD Ka hoʻololi pololei ʻana o ka wela i nā ana pyroelectric pili i ka ikehu uila.ʻO Olsen, RB a me Brown, DD ʻO ka hoʻololi pololei ʻana o ka wela i ka ikehu uila pili me nā ana pyroelectric. Olsen, RB & Brown, DD 高效直接将热量转换为电能相关的热释电测量。 Olsen, RB & Brown, DDOlsen, RB a me Brown, DD ʻO ka hoʻololi pololei ʻana o ka wela i ka uila e pili ana me nā ana pyroelectric.Ferroelectrics 40, 17–27 (1982).
Pandya, S. et al.ʻO ka ikehu a me ka nui o ka mana ma nā kiʻiʻoniʻoni ferroelectric relaxor.Kahukula lahui.https://doi.org/10.1038/s41563-018-0059-8 (2018).
Smith, AN & Hanrahan, BM Cascaded pyroelectric hoʻololi: hoʻonui i ka ferroelectric phase transition a me nā poho uila. Smith, AN & Hanrahan, BM Cascaded pyroelectric hoʻololi: hoʻonui i ka ferroelectric phase transition a me nā poho uila.Smith, AN a me Hanrahan, BM Cascaded pyroelectric conversion: ferroelectric phase transition and electrical loss optimization. Smith, AN & Hanrahan, BM 级联热释电转换:优化铁电相变和电损耗。 Smith, AN & Hanrahan, BMSmith, AN a me Hanrahan, BM Cascaded pyroelectric conversion: optimization of ferroelectric phase transitions and electrical loss.J. Noi.physics.128, 24103 (2020).
Hoch, SR Ka hoʻohana ʻana i nā mea ferroelectric e hoʻohuli i ka ikehu wela i uila.kaʻina hana.IEEE 51, 838–845 (1963).
Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. Cascaded pyroelectric mea hoʻololi ikehu. Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. Cascaded pyroelectric mea hoʻololi ikehu.Olsen, RB, Bruno, DA, Briscoe, JM a me Dullea, J. Cascade Pyroelectric Power Converter. Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. 级联热释电能量转换器。 Olsen, RB, Bruno, DA, Briscoe, JM & Dullea, J. 级联热释电能量转换器。Olsen, RB, Bruno, DA, Briscoe, JM a me Dullea, J. Cascaded pyroelectric power converters.Ferroelectrics 59, 205–219 (1984).
Shebanov, L. & Borman, K. Ma ke alakaʻi-scandium tantalate paʻa hopena me ka hopena electrocaloric kiʻekiʻe. Shebanov, L. & Borman, K. Ma ke alakaʻi-scandium tantalate paʻa hopena me ka hopena electrocaloric kiʻekiʻe.ʻO Shebanov L. a me Borman K. Ma nā hopena paʻa o ke alakaʻi-scandium tantalate me ka hopena electrocaloric kiʻekiʻe. Shebanov, L. & Borman, K. 关于具有高电热效应的钪铅钪固溶体。 Shebanov, L. & Borman, K.ʻO Shebanov L. a me Borman K. Ma nā hopena paʻa scandium-lead-scandium me ka hopena electrocaloric kiʻekiʻe.Ferroelectrics 127, 143–148 (1992).
Mahalo mākou iā N. Furusawa, Y. Inoue, a me K. Honda no ko lākou kōkua ʻana i ka hana ʻana i ka MLC.PL, AT, YN, AA, JL, UP, VK, OB a me ED Mahalo i ka Luxembourg National Research Foundation (FNR) no ke kākoʻo ʻana i kēia hana ma o CAMELHEAT C17/MS/11703691/Defay, MASSENA PRIDE/15/10935404/Defay- Siebentritt, THERMODIMAT C20/MS/14718071/Defay a me BRIDGES2021/MS/16282302/CECOHA/Defay.
Keʻena o ka ʻimi noiʻi a me ka ʻenehana, Luxembourg Institute of Technology (LIST), Belvoir, Luxembourg


Ka manawa hoʻouna: Sep-15-2022